Skip to main content
Log in

Banach Lie-Poisson Spaces and Reduction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The category of Banach Lie-Poisson spaces is introduced and studied. It is shown that the category of W *-algebras can be considered as one of its subcategories. Examples and applications of Banach Lie-Poisson spaces to quantization and integration of Hamiltonian systems are given. The relationship between classical and quantum reduction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Second Edition, Reading, MA: Addison-Wesley, 1978

  2. Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications. Second Edition, Applied Mathematical Sciences 75, New York, NY: Springer-Verlag, 1988

  3. Accardi, L., Frigerio, A. and Gorini, V.: Quantum probability and Applications. Lecture Notes in Math. 1136, New York, NY: Springer-Verlag, 1984

  4. Accardi, L., von Waldenfels: Quantum probability and Applications III. Lecture Notes in Math. 1396, New York, NY: Springer-Verlag, 1988

  5. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Mathematics 60, New York, NY: Springer-Verlag, 1989

  6. Bona, P.: Extended quantum mechanics. Acta Physica Slovaca 50(1), 1198 (2000)

    Google Scholar 

  7. Boos, B., Bleecker, D.: Topology and Analysis. The Atiyah-Singer Index Formula and Gauge-Theoretic Physics. Universitext, New York, NY: Springer-Verlag, 1983

  8. Bourbaki, N.: Intégration. Chapitre 6, Paris: Hermann, 1959

  9. Bourbaki, N.: Variétés différentielles et analytiques. Fascicule de résultats. Paragraphes 1 à 7. Paris: Hermann, 1967

  10. Bourbaki, N.: Groupes et algèbres de Lie. Chapitre 3, Paris: Hermann, 1972

  11. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. New York, NY: Springer-Verlag, 1979

  12. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. New York, NY: Springer-Verlag, 1981

  13. Chernoff, P.R., Marsden, J.E.: Properties of Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 425, New York, NY: Springer-Verlag, 1974

  14. Ehrenfest, P.: Z. Physik 45, 455 (1927)

    MATH  Google Scholar 

  15. Emch, G.: Algebraic Methods in Statistical Mechanics. New York: Wiley Interscience, 1972

  16. Holevo, A.: Statistical Structure of Quantum theory. Lecture Notes in Physics, Monographs, New York, NY: Springer-Verlag, 2001

  17. Kirillov, A.A.: The orbit method, II: Infinite-dimensional Lie groups and Lie algebras. In: Cont. Math. 145, Representation Theory of Groups and Algebras, Providence, RI: Am. Math. Soc., 1993, pp. 33–63

  18. Klauder, J.R., Skagerstem, Bo-Sure: Coherent States – Applications in Physics and Mathematical Physics. Singapore: World Scientific, 1985

  19. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. New York: Wiley, 1963

  20. Kostant, B.: Orbits, symplectic structures and representation theory. In: Proc, US-Japan Seminar on Diff. Geom., Kyoto. Tokyo: Nippon Hyronsha, 1966, p. 71

  21. Kostant, B.: Quantization and unitary representations. Lecture Notes in Math. 170, Berlin-Heidelberg-New York: Springer-Verlag, 1970, pp. 87–208

  22. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer Monographs in Mathematics, New York, NY: Springer-Verlag, 1998

  24. Leble, S.B., Czachor, M.: Darboux-integrable Liouville-von Neumann equations. Phys. Rev. E 58, 7091 (1998)

    Article  MathSciNet  Google Scholar 

  25. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Dordredut: Kluwer Academic Publishers, 1987

  26. Lichnerowicz, A.: Variétés de Jacobi et espaces homogènes de contact complexes. J. Math. Pures et Appl. 67, 131–173 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Lie, S.: Theorie der Transformationsgruppen, Zweiter Abschnitt. Leipzig: Teubner, 1890

  28. Marsden, J.E., Ratiu, T.S.: Reduction of Poisson manifolds. Lett. Math. Phys. 11, 161–170 (1986)

    MathSciNet  MATH  Google Scholar 

  29. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, 17, Second Edition, Second printing 2003, New York, NY: Springer-Verlag, 1994

  30. Murphy, G.J.: C *-algebras and Operator Theory. San Diego: Academic Press, 1990

  31. Nunes da Costa, J.M.: Reduction of complex Poisson manifolds. Portugaliae Math. 54, 467–476 (1997)

    MATH  Google Scholar 

  32. Odzijewicz, A.: On reproducing kernels and quantization of states. Commun. Math. Phys. 114, 577–597 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Odzijewicz, A.: Coherent states and geometric quantization. Commun. Math. Phys. 150, 385–413 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Odzijewicz, A.: Coherent states for reduced phase spaces. In: Quantization and Coherent States Methods, Ali, S.T., Mladenov, I.M., Odzijewicz, A. (eds.), Singapore: World Sci. Press, 1993, pp. 161–169

  35. Odzijewicz, A.: Covariant and contravariant Berezin symbols of bounded operators. In: Quantization and Infinite- Dimensional Systems, Antoine, J.-P., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds.), Singapore: World Sci. Press, 1994, pp. 99–108

  36. Odzijewicz, A., Ratiu, T.S.: The Banach Poisson geometry of the infinite Toda lattice. Preprint, 2003

  37. Odzijewicz, A., Swietochowski, M.: Coherent states map for MIC-Kepler system. J. Math. Phys. 38, 5010–5030, (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ratiu, T.S.: Involution theorems. In: Geometric Methods in Mathematical Physics, Kaiser, G., Marsden, J.E. (eds.), Springer Lecture Notes 775, New York, NY: Springer-Verlag, 1978, pp. 219–257

  39. Sakai, S.: C * -Algebras and W * -Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, 60, 1998 (reprint of the 1971 edition) New York, NY: Springer-Verlag, 1971

    Google Scholar 

  40. Schrödinger, E.: Naturwissenschaften. 14, 664 (1926)

  41. Stefan, P.: Accessible sets, orbits and foliations with singularities. Proc. London Math. Soc. 29, 699–713 (1974)

    MATH  Google Scholar 

  42. Souriau, J.-M.: Quantification géométrique. Commun. Math. Phys. 1, 374–398 (1966)

    Google Scholar 

  43. Souriau, J.-M.: Quantification géométrique. Applications. Ann. Inst. H. Poincaré. 6, 311–341 (1967)

    MATH  Google Scholar 

  44. Takesaki, M.: Conditional expectations in von Neumann algebra. J. Funct. Anal. 9, 306–321 (1972)

    MATH  Google Scholar 

  45. Takesaki, M.: Theory of Operator Algebras I. New York, NY: Springer-Verlag, 1979

  46. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, 118, Basel: Birkhäuser Verlag, 1994

  47. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton Univ. Press, 1955

  48. Weinstein, A.: The local structure of Poisson manifolds. J. Diff. Geom. 18, 523–557 (1983)

    MathSciNet  MATH  Google Scholar 

  49. Weinstein, A.: Poisson geometry. Diff. Geom. Appl. 9, 213–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor S. Ratiu.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odzijewicz, A., Ratiu, T. Banach Lie-Poisson Spaces and Reduction. Commun. Math. Phys. 243, 1–54 (2003). https://doi.org/10.1007/s00220-003-0948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0948-8

Keywords

Navigation