Communications in Mathematical Physics

, Volume 242, Issue 1–2, pp 277–329 | Cite as

Discrete Polynuclear Growth and Determinantal Processes

  • Kurt JohanssonEmail author


We consider a discrete polynuclear growth (PNG) process and prove a functional limit theorem for its convergence to the Airy process. This generalizes previous results by Prähofer and Spohn. The result enables us to express the F 1 GOE Tracy- Widom distribution in terms of the Airy process. We also show some results, and give a conjecture, about the transversal fluctuations in a point to line last passage percolation problem. Furthermore we discuss a rather general class of measures given by products of determinants and show that these measures have determinantal correlation functions.


Correlation Function Limit Theorem General Class Functional Limit Determinantal Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. 149, 921–976 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence in a random permutation. J. Am. Math. Soc. 12, 1119–1178 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Baik, J., Deift, P.A., McLaughlin, K., Miller, P., Zhou, X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5, 1207–1250 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baik, J., Rains, E.: Symmetrized random permutations. In: Random Matrix Models and Their Applications, P.M. Bleher and A.R. Its, (eds.), MSRI Publications 40, Cambridge: Cambridgen Univ. Press, 2001Google Scholar
  5. 5.
    Baryshnikov, Yu.: GUES and QUEUES. Probab. Theory Relat. Fields 119, 256–274 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Billingsley, P.: Convergence of Probability measures. New York: John Wiley & Sons, 1968Google Scholar
  7. 7.
    Borodin, A.: Biorthogonal ensembles. Nuel. Phys. B 536, 704–732 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Böttcher, A., Silberman, B.: Introduction to large truncated Toeplitz Matrices. Berlin-Heidelberg-New York: Springer, 1999Google Scholar
  9. 9.
    Dyson, F.J.: A Brownian-Motion Model for the eigenvalues of a Random Matrix. J. Math. Phys. 3, 1191–1198 (1962)zbMATHGoogle Scholar
  10. 10.
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain I: Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Fisher, M.E., Stephenson, J.: Statistical Mechanics of Dimers on a plane Lattice II: Dimer Correlations and Monomers. Phys. Rev. 132, 1411–1431 (1963)CrossRefzbMATHGoogle Scholar
  12. 12.
    Forrester, P.J.: Exact solution of the lock step model of vicious walkers. J. Phys. A: Math. Gen. 23, 1259–1273 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the soft and hard edges. Nucl. Phys. B 553, 601–643 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Fulton, W.: Young Tableaux. London Mathematical Society, Student Texts 35, Cambridge: Cambridge Univ. Press, 1997Google Scholar
  15. 15.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge: Cambridge University Press, 1985Google Scholar
  16. 16.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Johansson, K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Relat. Fields 116, 445–456 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Johansson, K.: Random growth and Random matrices. In: European Congress of Mathematics, Barcelona, Vol. I, Baset-Bosten: Birkhäuser, 2001Google Scholar
  20. 20.
    Johansson, K.: Universality of the local spacing distribution in certain ensembles of hermitian Wigner matrices. Commun. Math. Phys. 215, 683–705 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Johansson, K.: The arctic circle boundary and the Airy process. math.PR/0306216Google Scholar
  23. 23.
    Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré, Probabilités et Statistiques, 33, 591–618 (1997)Google Scholar
  24. 24.
    Krug, J., Spohn, H.: Kinetic Roughening of Growing Interfaces. In: Solids far from Equilibrium: Growth, Morphology and Defects, C. Godrèche, (ed.), Cambridge: Cambridge University Press, 1992, pp. 479–582Google Scholar
  25. 25.
    König, W., O’Connell, N., Roch, S.: Non-colliding random walks, tandem queues and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7(5), (2002)Google Scholar
  26. 26.
    Macêdo, A.M.S.: Europhys. Lett. 26, 641 (1994)Google Scholar
  27. 27.
    Mehta, M.L.: Random Matrices. 2nd ed., San Diego: Academic Press, 1991Google Scholar
  28. 28.
    Nagle, J.F.: Yokoi, C.S.O., Bhattacharjee, S.M.: Dimer models on anisotropic lattices. In: Phase Transitions and Critical Phenomena, Vol. 13, C. Domb, J. L. Lebowitz, (eds.), London-New York: Academic Press, 1989Google Scholar
  29. 29.
    Okounkov, A.: Infinite wedge and random partitions. Selecta Math. (N.S.) 7, 57–81 (2001)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with applications to local geometry with application to local geometry of a random 3-dimensional Young diagram. math.CO/0107056Google Scholar
  31. 31.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1076–1106 (2002)Google Scholar
  32. 32.
    Sagan, B.: The Symmetric Group. Monterey, CA: Brooks/Cole Publ. Comp. 1991Google Scholar
  33. 33.
    Simon, B.: Trace ideals and their applications. LMS Lecture Notes Series 35, Cambridge: Cambridge University Press, 1979Google Scholar
  34. 34.
    Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Stanley, R.P.: Enumerative Combinatorics. Vol. 2, Cambridge: Cambridge University Press, 1999Google Scholar
  36. 36.
    Tracy, C.A., Widom, H.: Level Spacing Distributions and the Airy Kernel. Commun. Math. Phys. 159, 151–174 (1994)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Tracy, C.A., Widom, H.: Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices. J. Stat. Phys. 92, 809–835 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Viennot, G.: Une forme géométrique de la correspondance de Robinson-Schensted. Lecture Notes in Math. 579, Berlin: Springer, 1977, pp. 29–58Google Scholar
  39. 39.
    Widom, H.: On Convergence of Moments for Random Young Tableaux and a Random Growth Model. Int. Math. Res. Not. 9, 455–464 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Yokoi, C.S.O., Nagle, J.F., Salinas, S.R.: Dimer Pair Correlations on the Brick Lattice. J. Stat. Phys. 44, 729–747 (1986)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations