Skip to main content
Log in

Invariant Measures Exist Without a Growth Condition

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a non-flat S-unimodal interval map f, we show that there exists C which only depends on the order of the critical point c such that if |Df n(f(c))|≥C for all n sufficiently large, then f admits an absolutely continuous invariant probability measure (acip). As part of the proof we show that if the quotients of successive intervals of the principal nest of f are sufficiently small, then f admits an acip. As a special case, any S-unimodal map with critical order ℓ<2+ɛ having no central returns possesses an acip. These results imply that the summability assumptions in the theorems of Nowicki & van Strien [21] and Martens & Nowicki [17] can be weakened considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys. 69, 1–17 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Bruin, H.: Topological conditions for the existence of invariant measures for unimodal maps. Ergod. Th. & Dynam. Sys. 14, 433–451 (1994)

    Google Scholar 

  3. Bruin, H.: Topological conditions for the existence of Cantor attractors. Trans. Am. Math. Soc. 350, 2229–2263 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild Cantor attractors exist. Ann. Math. 143, 97–130 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Collet, P., Eckmann, J.-P.: Positive Liapunov exponents and absolute continuity for maps of the interval. Ergod. Th. & Dyn. Sys. 3, 13–46 (1983)

    Google Scholar 

  6. Graczyk, J., Świtek, G.: Induced expansion for quadratic polynomials. Ann. Sci Éc. Norm. Súp. 29, 399–482 (1996)

    MATH  Google Scholar 

  7. Graczyk, J., Sands, D., Świtek, G.: Decay of geometry for unimodal maps: Negative Schwarzian case. Preprint, 2000

  8. Jakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81, 39–88 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Jakobson, M., Świtek, G.: Metric properties of non-renormalizable S-unimodal maps. I. Induced expansion and invariant measures. Ergod. Th. & Dynam. Sys. 14, 721–755 (1994)

    Google Scholar 

  10. Johnson, S.: Singular measures without restrictive intervals. Commun. Math. Phys. 110, 185–190 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Keller, G., Nowicki, T.: Fibonacci maps re(aℓ)visited. Ergod. Th. & Dyn. Sys. 15, 99–120 (1995)

    Google Scholar 

  12. Lyubich, M.: Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. of Math. 140, 347–404 (1994) and Erratum Manuscript, 2000

    MathSciNet  MATH  Google Scholar 

  13. Lyubich, M., Milnor, J.: The Fibonacci unimodal map. J. Am. Math. Soc. 6, 425–457 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Mañé, R.: Hyperbolicity, sinks and measure in one-dimensional dynamics. Commun. Math. Phys. 100(4), 495–524 (1985)

    Google Scholar 

  15. Martens, M.: Interval dynamics. Ph.D. Thesis, Delft, 1990

  16. Martens, M.: Distortion results and invariant Cantor sets of unimodal maps. Ergod. Th. & Dynam. Sys. 14, 331–349 (1994)

    Google Scholar 

  17. Martens, M., Nowicki, T.: Invariant measures for typical quadratic maps, Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque 261, 239–252 (2000)

    MATH  Google Scholar 

  18. de Melo, W., van Strien, S.: One-dimensional dynamics. Berlin-Heidelberg-New York: Springer, 1993

  19. Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Publ. Math. I.H.E.S. 53, 17–51 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Nowicki, T.: A positive Liapunov exponent for the critical value of an S-unimodal mapping implies uniform hyperbolicity. Ergod. Th. & Dynam. Sys. 8, 425–435 (1988)

    Google Scholar 

  21. Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition. Invent. Math. 105, 123–136 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Pianigiani, G.: Absolutely continuous invariant measures on the interval for the process x n+1=Ax n (1-x n ). Boll. Un. Mat. Ital. 16, 364–378 (1979)

    Google Scholar 

  23. Shen, W.: Decay geometry for unimodal maps: An elementary proof. Preprint Warwick, 2002

  24. Straube, E.: On the existence of invariant absolutely continuous measures. Commun. Math. Phys. 81, 27–30 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Bruin.

Additional information

Communicated by P. Sarnak

HB was supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW)

WS was supported by EPSRC grant GR/R73171/01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruin, H., Shen, W. & Strien, S. Invariant Measures Exist Without a Growth Condition. Commun. Math. Phys. 241, 287–306 (2003). https://doi.org/10.1007/s00220-003-0928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0928-z

Keywords

Navigation