Skip to main content
Log in

The Statistics of the Trajectory of a Certain Billiard in a Flat Two-Torus

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a billiard in the punctured torus obtained by removing a small disk of radius ɛ>0 from the flat torus 𝕋2, with trajectory starting from the center of the puncture. In this case the phase space is given by the range of the velocity ω only. Let ˜τɛ(ω), and respectively ˜Rɛ(ω), denote the first exit time (length of the trajectory), and respectively the number of collisions with the side cushions when 𝕋2 is being identified with [0,1)2. We prove that the probability measures on [0,∞) associated with the random variables ɛ˜τɛ and ɛ˜Rɛ are weakly convergent as \({{\varepsilon \rightarrow 0^+}}\) and explicitly compute the densities of the limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blecher, P.: Statistical properties of the Lorentz gas with infinite horizon. J. Stat. Phys. 66, 315–373 (1992)

    Google Scholar 

  2. Boca, F.P., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213, 433–470 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boca, F.P., Gologan, R.N., Zaharescu, A.: The average length of a trajectory in a certain billiard in a flat two-torus. Preprint arXiv math.NT/0110208

  4. Boca, F.P., Zaharescu, A.: The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit. Preprint arXiv math.NT/0301270

  5. Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunimovich, L.A., Sinai, Ya.G.: Statistical properties of the Lorentz gas with periodic configurations of scatterers. Commun. Math. Phys. 78, 479–497 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Bunimovich, L.A., Sinai, Ya.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78(81), 247–280 (1980)

    MATH  Google Scholar 

  8. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.: Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45, 105–152 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46, 47–106 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Caglioti, E., Golse, F.: On the distribution of free path lengths for the periodic Lorentz gas. III. Commun. Math. Phys. 236, 199–221 (2003)

    Google Scholar 

  11. Chernov, N.: New proof of Sinai's formula for the entropy of hyperbolic billiards. Application to Lorentz gases and Bunimovich stadium. Funct. Anal. and Appl. 25, 204–219 (1991)

    MATH  Google Scholar 

  12. Chernov, N.: Entropy, Lyapunov exponents, and free mean path for billiards. J. Stat. Phys. 88, 1–29 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Dahlqvist, P.: The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10, 159–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumas, H.S., Dumas, L., Golse, F.: On the mean free path for a periodic array of spherical obstacles. J. Stat. Phys. 82, 1385–1407 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Dumas, H.S., Dumas, L., Golse, F.: Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Stat. Phys. 87, 943–950 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Estermann, T.: On Kloosterman's sums. Mathematika 8, 83–86 (1961)

    MATH  Google Scholar 

  17. Friedman, B., Oono, Y., Kubo, I.: Universal behaviour of Sinai billiard systems in the small-scatterer limit. Phys. Rev. Lett. 52(9), 709–712 (1987)

    Article  Google Scholar 

  18. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. 4th Ed., Oxford: Clarendon Press, 1960

  19. Hooley, C.: An asymptotic formula in the theory of numbers. Proc. London Math. Soc. 7, 396–413 (1957)

    MathSciNet  MATH  Google Scholar 

  20. Kubo, I.: Perturbed billiard systems, I. The ergodicity of the motion of a particle in a compound central field. Nagoya J. Math. 61, 1–57 (1976)

    MATH  Google Scholar 

  21. Lewin, L.: Dilogarithms and associated functions. London: Macdonald & Co., 1958

  22. Sinai, Ya.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surv. 25, 137–189 (1970)

    MATH  Google Scholar 

  23. Sinai, Ya.G.: Hyperbollic billiards. In: Proceedings of the International Congress of Mathematicians (Kyoto, 1990), Tokyo: Math. Soc. Japan, 1991, pp. 249–260

  24. Weil, A.: On some exponential sums. Proc. Nat. Acad. U.S.A. 34, 204–207 (1948)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin P. Boca.

Additional information

Communicated by G. Gallavotti

Research partially supported by ANSTI grant C6189/2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boca, F., Gologan, R. & Zaharescu, A. The Statistics of the Trajectory of a Certain Billiard in a Flat Two-Torus. Commun. Math. Phys. 240, 53–73 (2003). https://doi.org/10.1007/s00220-003-0907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0907-4

Keywords

Navigation