Skip to main content
Log in

Holonomy and Skyrme's Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider two generalizations of the Skyrme model. One is a variational problem for maps from a compact 3-manifold to a compact Lie group. The other is a variational problem for flat connections. We describe the path components of the configuration spaces of smooth fields for each of the variational problems. We prove that the invariants separating the path components are well-defined for (not necessarily smooth) fields with finite Skyrme energy. We prove that for every possible value of these invariants there exists a minimizer of the Skyrme functional. Throughout the paper we emphasize the importance of holonomy in the Skyrme model. Some of the results may be useful in other contexts. In particular, we define the holonomy of a distributionally flat L 2 loc connection; the local developing maps for such connections need not be continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Lectures on exceptional Lie groups. Chicago and London: The University of Chicago Press, 1996

  2. Bott, R.: On torsion in Lie groups. Proc. Nat. Acad. Sci. U.S.A. 40, 586–588 (1954)

    MathSciNet  MATH  Google Scholar 

  3. Bröcker, Th., tom Dieck, T.: Representation of compact Lie groups. New York: Springer-Verlag, 1985

  4. Brown, K.S.: Cohomology of groups. New York: Springer-Verlag, 1982

  5. Burstall, F.E.: Harmonic maps of finite energy for non-compact manifolds. J. Lond. Math. Soc. 30, 361–370 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. New York: Oxford University Press, 1990

  7. Esteban, M.J., Müller, S.: Sobolev maps with integer degree and applications to Skyrme's problem. Proc. R. Soc. Lond. A 436, 197–201 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Gisiger, T., Paranjape, M.B.: Recent mathematical developments in the Skyrme model. Phys. Rep. 306, 109–211 (1998)

    Article  MathSciNet  Google Scholar 

  9. Gross, K.I.: The Plancherel transform on the nilpotent part of G 2 and some applications to the representation theory of G 2. Trans. Am. Math. Soc. 132, 411–446 (1968)

    MATH  Google Scholar 

  10. Zahed, I., Brown, G.E.: The Skyrme model. Phys. Rep. 142, 1–102 (1982)

    Article  Google Scholar 

  11. Kapitanski, L.: On Skyrme's model. In: Nonlinear Problems in Mathematical Physics and Related Topics II: In Honor of Professor O. A. Ladyzhenskaya, Birman et al., (eds.), Dordrecht: Kluwer, 2002, pp. 229–242

  12. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vols. I, II. New York: John Wiley & Sons, Inc., 1996

  13. Loss, M.: The Skyrme model on Riemannian manifolds. Lett. Math. Phys. 14, 149–156 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Manton, N.S., Ruback, P.J.: Skyrmions in flat space and curved space. Phys. Lett. B 181, 137–140 (1986)

    Article  MathSciNet  Google Scholar 

  15. Moise, E.: Affine structures in 3-manifolds, V: The triangulation theorem and Hauptvermutung. Ann. Math. 56 (2), 96–114 (1952)

    MATH  Google Scholar 

  16. Müller, S.: Higher integrability of determinants and weak convergence in L 1. J. reine angew. Math. 412, 20–34 (1990)

    Google Scholar 

  17. Munkres, J.R.: Elementary differential topology. Revised edition. Annals of Mathematics Studies, No. 54 Princeton, NJ: Princeton University Press, 1966

  18. Mimura, M., Toda, H.: Topology of Lie groups, I and II. Transl. Am. Math. Soc., Providence, Rhode Island: Am. Math. Soc., 1991

  19. Robbin, J.W., Rogers, R.C., Temple, B.: On weak continuity and the Hodge decomposition. Trans. AMS 303 (2), 609–618 (1987)

    MATH  Google Scholar 

  20. Rolfsen, D.: Knots and links. Mathematics Lecture Series, Vol. 7, Houston, TX: Publish or Perish, 1990

  21. Simon, B.: Representations of finite and compact groups. Graduate Studies in Math., Vol 10, Providence, RI: AMS, 1996

  22. Skyrme, T.H.R.: A non-linear field theory. Proc. R. Soc. Lond. A 260 (1300), 127–138 (1961)

    MATH  Google Scholar 

  23. Skyrme, T.H.R.: A unified theory of mesons and baryons. Nucl. Phy. 31, 556–569 (1962)

    Article  Google Scholar 

  24. Skyrme, T.H.R.: The origins of Skyrmions. Int. J. Mod. Phys. A3, 2745–2751 (1988)

  25. Spanier, E.H.: Algebraic topology. New York: Springer, 1966

  26. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rat. Mech. Anal. 100, 105–127 (1988)

    Google Scholar 

  27. Uhlenbeck, K.K.: The Chern classes of Sobolev connections. Commun. Math. Phys. 101, 449–457 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Takhtajan

The first author was partially supported by NSF grant DMS-0204651.

The second author was partially supported by NSF grants DMS-9970638, and DMS-0200670

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auckly, D., Kapitanski, L. Holonomy and Skyrme's Model. Commun. Math. Phys. 240, 97–122 (2003). https://doi.org/10.1007/s00220-003-0901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0901-x

Keywords

Navigation