Changes in the fatty acid content of Egyptian human milk across the lactation stages and in comparison with Chinese human milk

Abstract

The standard food for feeding babies is breast milk (BM). There is a growing interest in research related to the composition and positional distribution of fatty acids (FAs) in BM due to their role as the primary source of energy, essential FAs, and other physiological functions in the body. The purpose of this study was to assess the extent of changes in FAs content of the BM of Egyptian women over the three lactation stages with a comparison to their Chinese counterparts. FAs contents of 45 BM samples obtained from healthy Egyptian women during the three stages of lactation were analyzed using gas chromatography. The results showed that the total saturated FAs formed about 50% of the total FAs over lactation stages. The poly-unsaturated FAs were significantly different in the three stages of lactation; (20.63%) colostrum, (15.21%) transitional, and (25.23%) mature of the total FAs. Despite some fluctuations, the total sn-2 proportion of the n-6/n-3 ratio was nearly stable during lactation. The BM of Egyptian women had a slightly higher proportion of palmitic, myristic acids and a ratio of n-6/n-3. Conversely, Chinese women’s BM has a significantly higher proportion of oleic, nervonic as well as arachidonic, and docosahexaenoic acids. Further study should be conducted to evaluate the FAs composition of some commercial infant formulas available in Egypt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BM:

Breast milk

FAs:

Fatty acids

ARA:

Arachidonic acid

DHA:

Docosahexaenoic acid

ALA:

Alpha-linolenic acid

LA:

Linoleic acid

GC:

Gas chromatography

MAG:

Monoacylglycerol

PLS-DA:

Partial least squares discriminant analysis

SFAs:

Saturated fatty acids

MUFAs:

Mono-unsaturated fatty acids

PUFAs:

Poly-unsaturated fatty acids

SCFAs:

Short-chain fatty acids

MCFAs:

Medium-chain fatty acids

LCFAs:

Long-chain fatty acids

References

  1. 1.

    Fanos V, Pintus R, Reali A, Dessì A (2017) Miracles and mysteries of breast milk: from Egyptians to the 3 M’s (Metabolomics, Microbiomics, Multipotent stem cells). J Pediatr Neonatal Individ Med (JPNIM) 6(2):e060204

    Google Scholar 

  2. 2.

    Rahnemaie FS, Zare E, Zaheri F, Abdi F (2019) Effects of complementary medicine on successful breastfeeding and its associated issues in the postpartum period. Iran J Pediatr 29 (1)

  3. 3.

    Osborn ML (1979) The rent breasts: a brief history of wet-nursing. Midwife Health Visit Community Nurse 15(8):302–306

    CAS  PubMed  Google Scholar 

  4. 4.

    Wei W, Jin Q, Wang X (2019) Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res 74:69–86

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Santé OMDL, Organization WH, Staff WHO, UNICEF, UNAIDS (2003) Global strategy for infant and young child feeding. World Health Organization

  6. 6.

    Jensen RG (1996) The lipids in human milk. Prog Lipid Res 35(1):53–92

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Victora CG, Rollins NC, Murch S, Krasevec J, Bahl R (2016) Breastfeeding in the 21st century–Authors’ reply. Lancet 387(10033):2089–2090

    PubMed  Article  Google Scholar 

  8. 8.

    Kallio H, Nylund M, Boström P, Yang B (2017) Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem 233:351–360

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM (2007) Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85(6):1457–1464

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Szabó É, Boehm G, Beermann C, Weyermann M, Brenner H, Rothenbacher D, Decsi T (2010) Fatty acid profile comparisons in human milk sampled from the same mothers at the sixth week and the sixth month of lactation. J Pediatr Gastroenterol Nutr 50(3):316–320

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Wu T-C, Lau B-H, Chen P-H, Wu L-T, Tang R-B (2010) Fatty acid composition of Taiwanese human milk. J Chin Med Assoc 73(11):581–588

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Mäkelä J, Linderborg K, Niinikoski H, Yang B, Lagström H (2013) Breast milk fatty acid composition differs between overweight and normal weight women: the STEPS Study. Eur J Nutr 52(2):727–735

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Nishimura RY, Barbieiri P, de Castro GS, Jordão AA Jr, Perdoná GdSC, Sartorelli DS (2014) Dietary polyunsaturated fatty acid intake during late pregnancy affects fatty acid composition of mature breast milk. Nutrition 30(6):685–689

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Argov-Argaman N, Mandel D, Lubetzky R, Hausman Kedem M, Cohen B-C, Berkovitz Z, Reifen R (2017) Human milk fatty acids composition is affected by maternal age. J Matern-Fetal Neonatal Med 30(1):34–37

    CAS  PubMed  Google Scholar 

  15. 15.

    Muskiet F, Hutter N, Martini I, Jonxis J, Offringa P, Boersma E (1987) Comparison of the fatty acid composition of human milk from mothers in Tanzania, Curacao and Surinam. Human Nutr Clin Nutr 41(2):149–159

    CAS  Google Scholar 

  16. 16.

    Brouzes CM, Darcel N, Tomé D, Dao MC, Bourdet-Sicard R, Holmes BA, Lluch A (2020) Urban Egyptian women aged 19–30 years display nutrition transition-like dietary patterns, with high energy and sodium intakes, and insufficient iron, vitamin D, and folate intakes. Curr Dev Nutr 4 (2):nzz143

  17. 17.

    Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M (2016) Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr 104(3):646–662

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Qi C, Sun J, Xia Y, Yu R, Wei W, Xiang J, Jin Q, Xiao H, Wang X (2018) Fatty acid profile and the sn-2 position distribution in triacylglycerols of breast milk during different lactation stages. J Agric Food Chem 66(12):3118–3126

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Wijendran V, Lawrence P, Diau G-Y, Boehm G, Nathanielsz P, Brenna J (2002) Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J Lipid Res 43(5):762–767

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Pande G, Sabir JS, Baeshen NA, Akoh CC (2013) Synthesis of infant formula fat analogs enriched with DHA from extra virgin olive oil and tripalmitin. J Am Oil Chem Soc 90(9):1311–1318

    CAS  Article  Google Scholar 

  21. 21.

    Luddy F, Barford R, Herb S, Magidman P, Riemenschneider R (1964) Pancreatic lipase hydrolysis of triglycerides by a semimicro technique. J Am Oil Chem Soc 41(10):693–696

    CAS  Article  Google Scholar 

  22. 22.

    Kim H, Kang S, Jung B-M, Yi H, Jung JA, Chang N (2017) Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br J Nutr 117(4):556–561

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kostik V, Memeti S, Bauer B (2013) Fatty acid composition of edible oils and fats. J Hyg Eng Design 4:112–116

    Google Scholar 

  24. 24.

    Samur G, Topcu A, Turan S (2009) Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet’s. Lipids 44(5):405–413

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Hayat L, Al-Sughayer M, Afzal M (1999) A comparative study of fatty acids in human breast milk and breast milk substitutes in Kuwait. Nutr Res 19(6):827–841

    CAS  Article  Google Scholar 

  26. 26.

    Al-Othman AA, El-Fawaz HA, Hewdy FM, Abdullah NM (1996) Fatty acid composition of mature breast milk of Saudi lactating mothers. Food Chem 57(2):211–215

    CAS  Article  Google Scholar 

  27. 27.

    Laryea M, Leichsenring M, Mrotzek M, El-Amin EO, El Kharib AO, Ahmed HM, Bremer H (1995) Fatty acid composition of the milk of well-nourished Sudanese women. Int J Food Sci Nutr 46(3):205–214

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Borschel MW, Elkin RG, Kirksey A, Story JA, Galal O, Harrison GG, Jerome NW (1986) Fatty acid composition of mature human milk of Egyptian and American women. Am J Clin Nutr 44(3):330–335

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Bitman J, Wood L, Hamosh M, Hamosh P, Mehta NR (1983) Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr 38(2):300–312

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Moltó-Puigmartí C, Castellote AI, Carbonell-Estrany X, López-Sabater MC (2011) Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin Nutr 30(1):116–123

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Ramırez M, Amate L, Gil A (2001) Absorption and distribution of dietary fatty acids from different sources. Early Human Dev 65:S95–S101

    Article  Google Scholar 

  32. 32.

    Korma SA, Li L, Abdrabo KAE, Ali AH, Rahaman A, Abed SM, Bakry IA, Wei W, Wang X (2020) A comparative study of lipid composition and powder quality among powdered infant formula with novel functional structured lipids and commercial infant formulas. Eur Food Res Technol. https://doi.org/10.1007/s00217-020-03597-7

    Article  Google Scholar 

  33. 33.

    Lehner F, Demmelmair H, Röschinger W, Decsi T, Szász M, Adamovich K, Arnecke R, Koletzko B (2006) Metabolic effects of intravenous LCT or MCT/LCT lipid emulsions in preterm infants. J Lipid Res 47(2):404–411

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Rodriguez M, Funke S, Fink M, Demmelmair H, Turini M, Crozier G, Koletzko B (2003) Plasma fatty acids and [13C] linoleic acid metabolism in preterm infants fed a formula with medium-chain triglycerides. J Lipid Res 44(1):41–48

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    McH S, Silva MTC, Brandão SC, Gomes JC, Peternelli LA, do CC Franceschini S, (2005) Fatty acid composition of mature breast milk in Brazilian women. Food Chem 93(2):297–303

    Article  CAS  Google Scholar 

  36. 36.

    Sundram K, Hayes K, Siru OH (1994) Dietary palmitic acid results in lower serum cholesterol than does a lauric-myristic acid combination in normolipemic humans. Am J Clin Nutr 59(4):841–846

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Tanaka K, Hosozawa M, Kudo N, Yoshikawa N, Hisata K, Shoji H, Shinohara K, Shimizu T (2013) The pilot study: sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Develop 35(1):45–52

    CAS  Article  Google Scholar 

  39. 39.

    Gardner AS, Rahman IA, Lai CT, Hepworth A, Trengove N, Hartmann PE, Geddes DT (2017) Changes in fatty acid composition of human milk in response to cold-like symptoms in the lactating mother and infant. Nutrients 9(9):1034

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  40. 40.

    German JB, Dillard CJ (2004) Saturated fats: what dietary intake? Am J Clin Nutri 80(3):550–559

    CAS  Article  Google Scholar 

  41. 41.

    Amminger G, Schäfer M, Klier C, Slavik J, Holzer I, Holub M, Goldstone S, Whitford T, McGorry P, Berk M (2012) Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol Psychiatr 17(12):1150–1152

    CAS  Article  Google Scholar 

  42. 42.

    Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47(3):217–234

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Iranpour R, Kelishadi R, Babaie S, Khosravi-Darani K, Farajian S (2013) Comparison of long chain polyunsaturated fatty acid content in human milk in preterm and term deliveries and its correlation with mothers’ diet. J Res Med Sci 18(1):1

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Makrides M, Simmer K, Neumann M, Gibson R (1995) Changes in the polyunsaturated fatty acids of breast milk from mothers of full-term infants over 30 wk of lactation. Am J Clin Nutr 61(6):1231–1233

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Marangoni F, Agostoni C, Lammardo A, Bonvissuto M, Giovannini M, Galli C, Riva E (2002) Polyunsaturated fatty acids in maternal plasma and in breast milk. Prostaglandins Leukot Essent Fatty Acids 66(5–6):535–540

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kuipers RS, Luxwolda MF, Dijck-Brouwer DJ, Muskiet FA (2011) Differences in preterm and term milk fatty acid compositions may be caused by the different hormonal milieu of early parturition. Prostaglandins Leukot Essent Fatty Acids 85(6):369–379

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Demmelmair H, Baumheuer M, Koletzko B, Dokoupil K, Kratl G (2001) Investigation of long-chain polyunsaturated fatty acid metabolism in lactating women by means of stable isotope techniques. In: Bioactive Components of Human Milk. Springer, pp 169–177

  48. 48.

    Nagachinta S, Akoh CC (2013) Synthesis of structured lipid enriched with omega fatty acids and sn-2 palmitic acid by enzymatic esterification and its incorporation in powdered infant formula. J Agric Food Chem 61(18):4455–4463

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Blanchard E, Zhu P, Schuck P (2013) Infant formula powders. In: Handbook of food powders. Elsevier, pp 465–483

  50. 50.

    Small DM (1991) The effects of glyceride structure on absorption and metabolism. Annu Rev Nutr 11:413

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Bottino NR, Vandenburg GA, Reiser R (1967) Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids 2(6):489–493

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Lopez-Lopez A, Lopez-Sabater M, Campoy-Folgoso C, Rivero-Urgell M, Castellote-Bargallo A (2002) Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr 56(12):1242–1254

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Mehrotra V, Sehgal SK, Bangale NR (2019) Fat structure and composition in human milk and infant formulas: Implications in infant health. Clin Epidemiol Global Health 7(2):153–159

    Article  Google Scholar 

  54. 54.

    Miles EA, Calder PC (2017) The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutr Res 44:1–8

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Bar-Yoseph F, Lifshitz Y, Cohen T (2013) Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot Essent Fatty Acids 89(4):139–143

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Shi Y-d, Sun G-q, Zhang Z-g, Deng X, Kang X-h, Liu Z-d, Ma Y, Sheng Q-h (2011) The chemical composition of human milk from Inner Mongolia of China. Food Chem 127(3):1193–1198

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Qin B, Adair LS, Plassman BL, Batis C, Edwards LJ, Popkin BM, Mendez MA (2015) Dietary patterns and cognitive decline among Chinese older adults. Epidemiology (Cambridge, Mass) 26(5):758

    Article  Google Scholar 

  58. 58.

    Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc B: Biol Sci 365(1554):2793–2807

    Article  Google Scholar 

  59. 59.

    Suburu J, Shi L, Wu J, Wang S, Samuel M, Thomas MJ, Kock ND, Yang G, Kridel S, Chen YQ (2014) Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol-Endocrinol Metab 306(10):E1132–E1143

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Hachey DL, Silber GH, Wong WW, Garza C (1989) Human lactation II: endogenous fatty acid synthesis by the mammary gland. Pediatr Res 25(1):63–68

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Read W, LUTZ PG, TASHJIAN A (1965) Human milk lipids: III. Short-term effects of dietary carbohydrate and fat. Am J Clin Nutr 17 (3):184–187

  62. 62.

    Ballabriga A, Martinez M (1976) Changes in erythrocyte lipid stroma in the premature infant according to dietary fat composition. Acta Pædiatr 65(5):705–709

    CAS  Article  Google Scholar 

  63. 63.

    Francois CA, Connor SL, Wander RC, Connor WE (1998) Acute effects of dietary fatty acids on the fatty acids of human milk. Am J Clin Nutr 67(2):301–308

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Glew RH, Wold RS, Corl B, Calvin CD, Vanderjagt DJ (2011) Low docosahexaenoic acid in the diet and milk of American Indian women in New Mexico. J Am Diet Assoc 111(5):744–748

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Yuhas R, Pramuk K, Lien E (2008) Lipids: Human milk fatty acid composition from nine countries varies most in DHA. Breastfeed Rev 16(1):31–32

    Google Scholar 

  66. 66.

    Koletzko B, Cetin I, Brenna JT, Group PLIW (2007) Dietary fat intakes for pregnant and lactating women. Br J Nutr 98(5):873–877

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Kim J, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66(4):596

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6):1505S-1519S

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Seppänen-Laakso T, Vanhanen H, Laakso I, Kohtamäki H, Viikari J (1992) Replacement of butter on bread by rapeseed oil and rapeseed oil-containing margarine: effects on plasma fatty acid composition and serum cholesterol. Br J Nutr 68(3):639–654

    PubMed  Article  Google Scholar 

  70. 70.

    Vieira CP, Álvares TS, Gomes LS (2015) Kefir grains change fatty acid profile of milk during fermentation and storage. PLoS ONE 10(10):e0139910

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant number 31701558), the Young Elite Scientists Sponsorship Program by CAST (Grant number 2017QNRC001), and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project, B90719028).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Xingguo Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The experiments were approved by the Ethics Committee of Jiangnan University (JN no. 2121203-0120).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakry, I.A., Korma, S.A., Wei, W. et al. Changes in the fatty acid content of Egyptian human milk across the lactation stages and in comparison with Chinese human milk. Eur Food Res Technol (2021). https://doi.org/10.1007/s00217-021-03685-2

Download citation

Keywords

  • Breast milk
  • Egyptian women
  • Chinese women
  • Fatty acids
  • Sn-2 fatty acids
  • Maternal diet