Oat proteins as emerging ingredients for food formulation: where we stand?


Over the last decades, interest in oats (Avena sativa L.) as healthy foods increased due to their multiple functional and bioactive components such as dietary fibers, polyphenols, and proteins. Protein extracted from oats received considerable attention being more abundant (12–20%) and having a distinct composition compared to other cereal grains. Oat proteins also present pleasant sensorial attributes compared to proteins deriving from legumes and oil seeds. Protein isolates or concentrates can be dry- or wet- extracted, and subsequent enzymatic hydrolysis can release peptides with bioactive properties. Several strategies have been successfully applied to improve the techno-functionality of oat proteins. In terms of food application, there are few oat protein-based food products available in the market, which urge food developers to build tailored strategies and food portfolios of these ingredients. This review will address oat proteins extraction technologies and pre/post-treatment strategies, main characteristics, and applications. Future research is still required to take advantage of breeding progress to select high grain-protein oat varieties and to boost the incorporation of oat proteins in foods while keeping in mind the cost and the environmental impact.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Boukid F (2020) Plant-based meat analogues: from niche to mainstream. Eur Food Res Technol 1:3. https://doi.org/10.1007/s00217-020-03630-9

    CAS  Article  Google Scholar 

  2. 2.

    FAO (2019) Oat production. http://www.fao.org/home/en/. Accessed 2 Sep 2020

  3. 3.

    Tanner G, Juhász A, Florides CG et al (2019) Preparation and characterization of avenin-enriched oat protein by chill precipitation for feeding trials in celiac disease. Front Nutr 6:162. https://doi.org/10.3389/fnut.2019.00162

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Prosekov A, Babich O, Kriger O et al (2018) Functional properties of the enzyme-modified protein from oat bran. Food Biosci 24:46–49. https://doi.org/10.1016/j.fbio.2018.05.003

    CAS  Article  Google Scholar 

  5. 5.

    Beloshapka A, Buff P, Fahey G, Swanson K (2016) Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 5:23. https://doi.org/10.3390/foods5020023

    CAS  Article  PubMed Central  Google Scholar 

  6. 6.

    Ramadhan K, Foster TJ (2018) Effects of ball milling on the structural, thermal, and rheological properties of oat bran protein flour. J Food Eng 229:50–56. https://doi.org/10.1016/j.jfoodeng.2017.10.024

    CAS  Article  Google Scholar 

  7. 7.

    Esfandi R, Willmore WG, Tsopmo A (2019) Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem 279:49–57. https://doi.org/10.1016/j.foodchem.2018.11.110

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schutyser MAI, van der Goot AJ (2011) The potential of dry fractionation processes for sustainable plant protein production. Trends Food Sci Technol 22:154–164

    CAS  Article  Google Scholar 

  9. 9.

    Brückner-Gühmann M, Vasil’eva E, Culetu A et al (2019) Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. J Sci Food Agric 99:5852–5857. https://doi.org/10.1002/jsfa.9858

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Brückner-Gühmann M, Banovic M, Drusch S (2019) Towards an increased plant protein intake: rheological properties, sensory perception and consumer acceptability of lactic acid fermented, oat-based gels. Food Hydrocoll 96:201–208. https://doi.org/10.1016/j.foodhyd.2019.05.016

    CAS  Article  Google Scholar 

  11. 11.

    Nieto-Nieto TV, Wang YX, Ozimek L, Chen L (2015) Inulin at low concentrations significantly improves the gelling properties of oat protein—A molecular mechanism study. Food Hydrocoll 50:116–127. https://doi.org/10.1016/j.foodhyd.2015.03.031

    CAS  Article  Google Scholar 

  12. 12.

    Zhong L, Ma N, Wu Y et al (2019) Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction. Food Hydrocoll 87:459–469. https://doi.org/10.1016/j.foodhyd.2018.08.034

    CAS  Article  Google Scholar 

  13. 13.

    Sterna V, Zute S, Brunava L (2016) Oat grain composition and its nutrition benefice. Agric Agric Sci Proc 8:252–256. https://doi.org/10.1016/j.aaspro.2016.02.100

    Article  Google Scholar 

  14. 14.

    Stevenson DG, Inglett GE, Chen D et al (2008) Phenolic content and antioxidant capacity of supercritical carbon dioxide-treated and air-classified oat bran concentrate microwave-irradiated in water or ethanol at varying temperatures. Food Chem 108:23–30. https://doi.org/10.1016/j.foodchem.2007.08.060

    CAS  Article  Google Scholar 

  15. 15.

    Walters M, Lima Ribeiro AP, Hosseinian F, Tsopmo A (2018) Phenolic acids, avenanthramides, and antioxidant activity of oats defatted with hexane or supercritical fluid. J Cereal Sci 79:21–26. https://doi.org/10.1016/j.jcs.2017.09.010

    CAS  Article  Google Scholar 

  16. 16.

    Hernot DC, Boileau TW, Bauer LL et al (2008) In vitro digestion characteristics of unprocessed and processed whole grains and their components. J Agric Food Chem 56:10721–10726. https://doi.org/10.1021/jf801944a

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Peterson DM, Wood DF (1997) Composition and structure of high-oil oat. J Cereal Sci 26:121–128. https://doi.org/10.1006/jcrs.1996.0111

    CAS  Article  Google Scholar 

  18. 18.

    Verma DK, Srivastav PP (2017) Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian Rice. Rice Sci 24:21–31. https://doi.org/10.1016/j.rsci.2016.05.005

    Article  Google Scholar 

  19. 19.

    Boukid F, Zannini E, Carini E, Vittadini E (2019) Pulses for bread fortification: a necessity or a choice? Trends Food Sci Technol 88:416–428

    CAS  Article  Google Scholar 

  20. 20.

    Boukid F, Folloni S, Sforza S et al (2018) Current trends in ancient grains-based foodstuffs: insights into nutritional aspects and technological applications. Compr Rev Food Sci Food Saf 17:123–136. https://doi.org/10.1111/1541-4337.12315

    Article  PubMed  Google Scholar 

  21. 21.

    Gularte MA, Gómez M, Rosell CM (2012) Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food Bioprocess Technol 5:3142–3150. https://doi.org/10.1007/s11947-011-0642-3

    CAS  Article  Google Scholar 

  22. 22.

    Zare F, Champagne CP, Simpson BK et al (2012) Effect of the addition of pulse ingredients to milk on acid production by probiotic and yoghurt starter cultures. LWT Food Sci Technol 45:155–160. https://doi.org/10.1016/j.lwt.2011.08.012

    CAS  Article  Google Scholar 

  23. 23.

    Wijewardana C, Reddy KR, Bellaloui N (2019) Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem 278:92–100. https://doi.org/10.1016/j.foodchem.2018.11.035

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    de Silva F, O, Miranda TG, Justo T, et al (2018) Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT 90:224–231. https://doi.org/10.1016/j.lwt.2017.12.035

    CAS  Article  Google Scholar 

  25. 25.

    Researchandmarkets Oat Protein Market—Growth, Trends and Forecasts (2019–2024). In: 2019. https://www.researchandmarkets.com/reports/4622348/oat-protein-market-growth-trends-and-forecasts. Accessed 26 Aug 2020

  26. 26.

    Brückner-Gühmann M, Benthin A, Drusch S (2019) Enrichment of yoghurt with oat protein fractions: structure formation, textural properties and sensory evaluation. Food Hydrocoll 86:146–153. https://doi.org/10.1016/j.foodhyd.2018.03.019

    CAS  Article  Google Scholar 

  27. 27.

    Heusala H, Sinkko T, Mogensen L, Knudsen MT (2020) Carbon footprint and land use of food products containing oat protein concentrate. J Clean Prod 276:122938. https://doi.org/10.1016/j.jclepro.2020.122938

    CAS  Article  Google Scholar 

  28. 28.

    Mogensen L, Heusale H, Sinkko T et al (2020) Potential to reduce GHG emissions and land use by substituting animal-based proteins by foods containing oat protein concentrate. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122914

    Article  Google Scholar 

  29. 29.

    Jiang ZQ, Sontag-Strohm T, Salovaara H et al (2015) Oat protein solubility and emulsion properties improved by enzymatic deamidation. J Cereal Sci 64:126–132. https://doi.org/10.1016/j.jcs.2015.04.010

    CAS  Article  Google Scholar 

  30. 30.

    Bin ZC, Zhang H, Xu XY et al (2017) Effect of acetylation and succinylation on physicochemical properties and structural characteristics of oat protein isolate. Process Biochem 57:117–123. https://doi.org/10.1016/j.procbio.2017.03.022

    CAS  Article  Google Scholar 

  31. 31.

    Lehtinen P, Kiiliäinen K, Lehtomäki I, Laakso S (2003) Effect of heat treatment on lipid stability in processed oats. J Cereal Sci 37:215–221. https://doi.org/10.1006/jcrs.2002.0496

    CAS  Article  Google Scholar 

  32. 32.

    Ziegler V, Ferreira CD, da Silva J et al (2018) Heat-moisture treatment of oat grains and its effects on lipase activity and starch properties. Starch Stärke 70:1700010. https://doi.org/10.1002/star.201700010

    CAS  Article  Google Scholar 

  33. 33.

    Wang R, Koutinas AA, Campbell GM (2007) Effect of pearling on dry processing of oats. J Food Eng 82:369–376. https://doi.org/10.1016/j.jfoodeng.2007.02.051

    Article  Google Scholar 

  34. 34.

    Paton D, Reaney MJT, Tyler NJ (1999) US6113908A-Methods for processing oat groats and products thereof

  35. 35.

    Antonini E, Lombardi F, Alfieri M et al (2016) Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J Cereal Sci 72:46–53. https://doi.org/10.1016/j.jcs.2016.09.016

    CAS  Article  Google Scholar 

  36. 36.

    Alrahmany R, Avis TJ, Tsopmo A (2013) Treatment of oat bran with carbohydrases increases soluble phenolic acid content and influences antioxidant and antimicrobial activities. Food Res Int 52:568–574. https://doi.org/10.1016/j.foodres.2013.03.037

    CAS  Article  Google Scholar 

  37. 37.

    Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E (2020) Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. LWT. https://doi.org/10.1016/j.lwt.2020.109955

    Article  Google Scholar 

  38. 38.

    Guan X, Yao H (2008) Optimization of viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106:345–351. https://doi.org/10.1016/j.foodchem.2007.05.041

    CAS  Article  Google Scholar 

  39. 39.

    Harasym J, Zyła E, Dziendzikowska K, Gromadzka-Ostrowska J (2019) Proteinaceous residue removal from oat β-glucan extracts obtained by alkaline water extraction. Molecules. https://doi.org/10.3390/molecules24091729

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dawkins NL, Nnanna IA (1993) Oat gum and β-glucan extraction from oat bran and rolled oats: temperature and pH effects. J Food Sci 58:562–566. https://doi.org/10.1111/j.1365-2621.1993.tb04324.x

    CAS  Article  Google Scholar 

  41. 41.

    Sibakov J, Myllymäki O, Holopainen U et al (2011) Lipid removal enhances separation of oat grain cell wall material from starch and protein. J Cereal Sci 54:104–109. https://doi.org/10.1016/j.jcs.2011.04.003

    CAS  Article  Google Scholar 

  42. 42.

    Liu K (2014) Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. J Cereal Sci 60:317–322. https://doi.org/10.1016/j.jcs.2014.06.002

    CAS  Article  Google Scholar 

  43. 43.

    Udenigwe CC, Gong M, Wu S (2013) In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochem 48:1794–1799. https://doi.org/10.1016/j.procbio.2013.08.013

    CAS  Article  Google Scholar 

  44. 44.

    Cheung IWY, Nakayama S, Hsu MNK et al (2009) Angiotensim-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem 57:9234–9242. https://doi.org/10.1021/jf9018245

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wang B, Atungulu GG, Khir R et al (2015) Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein. Food Biophys 10:244–252. https://doi.org/10.1007/s11483-014-9375-y

    CAS  Article  Google Scholar 

  46. 46.

    Nieto-Nieto TV, Wang YX, Ozimek L, Chen L (2014) Effects of partial hydrolysis on structure and gelling properties of oat globular proteins. Food Res Int 55:418–425. https://doi.org/10.1016/j.foodres.2013.11.038

    CAS  Article  Google Scholar 

  47. 47.

    Zheng Z, Li J, Liu Y (2020) Effects of partial hydrolysis on the structural, functional and antioxidant properties of oat protein isolate. Food Funct 11:3144–3155. https://doi.org/10.1039/c9fo01783f

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Boeck T, D’Amico S, Zechner E et al (2018) Nutritional properties of various oat and naked oat cultivars. Bodenkultur 69:215–226. https://doi.org/10.2478/boku-2018-0018

    CAS  Article  Google Scholar 

  49. 49.

    Zhang B, Guo X, Zhu K et al (2015) Improvement of emulsifying properties of oat protein isolate-dextran conjugates by glycation. Carbohydr Polym 127:168–175. https://doi.org/10.1016/j.carbpol.2015.03.072

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Nivala O, Mäkinen OE, Kruus K et al (2017) Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chem 231:87–95. https://doi.org/10.1016/j.foodchem.2017.03.114

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Yang C, Wang Y, Chen L (2017) Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocoll 62:21–34. https://doi.org/10.1016/j.foodhyd.2016.07.023

    CAS  Article  Google Scholar 

  52. 52.

    Walters ME, Udenigwe CC, Tsopmo A (2018) Structural characterization and functional properties of proteins from oat milling fractions. JAOCS, J Am Oil Chem Soc 95:991–1000. https://doi.org/10.1002/aocs.12101

    CAS  Article  Google Scholar 

  53. 53.

    Jing X, Yang C, Zhang L (2016) Characterization and analysis of protein structures in oat bran. J Food Sci 81:C2337–C2343. https://doi.org/10.1111/1750-3841.13445

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Anderson OD (2014) The spectrum of major seed storage genes and proteins in oats (Avena sativa). PLoS ONE. https://doi.org/10.1371/journal.pone.0083569

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Real A, Comino I, de Lorenzo L et al (2012) Molecular and immunological characterization of gluten proteins isolated from oat cultivars that differ in toxicity for celiac disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0048365

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    WHO, FAO, UNU (2007) Protein and amino acid requirements in human nutrition - PubMed. World Heal Organ Tech Rep Ser 935:1–265

    Google Scholar 

  57. 57.

    Kriger OV, Kashirskikh EV, Babich OO, Noskova SY (2018) Oat protein concentrate production. Foods Raw Mater 6:47–55. https://doi.org/10.21603/2308-4057-2018-1-47-55

    CAS  Article  Google Scholar 

  58. 58.

    Gorissen SHM, Crombag JJR, Senden JMG et al (2018) Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50:1685–1695. https://doi.org/10.1007/s00726-018-2640-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bonke A, Sieuwerts S, Petersen IL (2020) Amino acid composition of novel plant drinks from oat, lentil and pea. Foods 9:429. https://doi.org/10.3390/foods9040429

    CAS  Article  PubMed Central  Google Scholar 

  60. 60.

    Abelilla JJ, Liu Y, Stein HH (2018) Digestible indispensable amino acid score (DIAAS) and protein digestibility corrected amino acid score (PDCAAS) in oat protein concentrate measured in 20- to 30-kilogram pigs. J Sci Food Agric 98:410–414. https://doi.org/10.1002/jsfa.8457

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Xu C, Lv J, You S et al (2013) Supplementation with oat protein ameliorates exercise-induced fatigue in mice. Food Funct 4:303–309. https://doi.org/10.1039/c2fo30255a

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Xia Z, Cholewa JM, Dardevet D et al (2018) Effects of oat protein supplementation on skeletal muscle damage, inflammation and performance recovery following downhill running in untrained collegiate men. Food Funct 9:4720–4729. https://doi.org/10.1039/c8fo00786a

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Bleakley S, Hayes M, O’ Shea N et al (2017) Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods 6:108. https://doi.org/10.3390/foods6120108

    CAS  Article  PubMed Central  Google Scholar 

  64. 64.

    Du Y, Esfandi R, Willmore W, Tsopmo A (2016) Antioxidant activity of oat proteins derived peptides in stressed hepatic HepG2 cells. Antioxidants 5:39. https://doi.org/10.3390/antiox5040039

    CAS  Article  PubMed Central  Google Scholar 

  65. 65.

    Ma S, Zhang M, Bao X, Fu Y (2020) Preparation of antioxidant peptides from oat globulin. CyTA J Food 18:108–115. https://doi.org/10.1080/19476337.2020.1716076

    CAS  Article  Google Scholar 

  66. 66.

    Comino I, Bernardo D, Bancel E et al (2016) Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr Res. https://doi.org/10.3402/fnr.v60.30324

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ahola HG, Sontag-Strohm TS, Schulman AH et al (2020) Immunochemical analysis of oat avenins in an oat cultivar and landrace collection. J Cereal Sci 95:103053. https://doi.org/10.1016/j.jcs.2020.103053

    CAS  Article  Google Scholar 

  68. 68.

    Aaltonen K, Laurikka P, Huhtala H et al (2017) The long-term consumption of oats in celiac disease patients is safe: a large cross-sectional study. Nutrients. https://doi.org/10.3390/nu9060611

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Fritz RD, Chen Y (2018) Oat safety for celiac disease patients: theoretical analysis correlates adverse symptoms in clinical studies to contaminated study oats. Nutr Res 60:54–67. https://doi.org/10.1016/j.nutres.2018.09.003

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Pinto-Sánchez MI, Causada-Calo N, Bercik P et al (2017) Safety of adding oats to a gluten-free diet for patients with celiac disease: systematic review and meta-analysis of clinical and observational studies. Gastroenterology 153:395-409.e3. https://doi.org/10.1053/j.gastro.2017.04.009

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Comino I, Real A, De Lorenzo L et al (2011) Diversity in oat potential immunogenicity: basis for the selection of oat varieties with no toxicity in coeliac disease. Gut 60:915–922. https://doi.org/10.1136/gut.2010.225268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hardy MY, Tye-Din JA, Stewart JA et al (2015) Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides. J Autoimmun 56:56–65. https://doi.org/10.1016/j.jaut.2014.10.003

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Codex alimentarius commission (2015) Codex Stan 118-1979. Standard for foods for special dietary use for persons intolerant to gluten

  74. 74.

    Koerner TB, Cléroux C, Poirier C et al (2011) Gluten contamination in the Canadian commercial oat supply. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:705–710. https://doi.org/10.1080/19440049.2011.579626

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Commission E (2014) Commission Implementing Regulation (EU) No 828/2014 on the requirements for the provision of information to consumers on the absence or reduced presence of gluten in food. Off J L228:4

    Google Scholar 

  76. 76.

    Brückner-Gühmann M, Heiden-Hecht T, Sözer N, Drusch S (2018) Foaming characteristics of oat protein and modification by partial hydrolysis. Eur Food Res Technol 244:2095–2106. https://doi.org/10.1007/s00217-018-3118-0

    CAS  Article  Google Scholar 

  77. 77.

    Mirmoghtadaie L, Kadivar M, Shahedi M (2009) Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem 114:127–131. https://doi.org/10.1016/j.foodchem.2008.09.025

    CAS  Article  Google Scholar 

  78. 78.

    Yang C, Wang Y, Lu L et al (2018) Oat protein-shellac beads: superior protection and delivery carriers for sensitive bioactive compounds. Food Hydrocoll 77:754–763. https://doi.org/10.1016/j.foodhyd.2017.11.017

    CAS  Article  Google Scholar 

  79. 79.

    Kaleda A, Talvistu K, Tamm M et al (2020) Impact of fermentation and phytase treatment of pea-oat protein blend on physicochemical, sensory, and nutritional properties of extruded meat analogs. Foods 9:1059. https://doi.org/10.3390/foods9081059

    CAS  Article  PubMed Central  Google Scholar 

  80. 80.

    Zhong L, Ma N, Wu Y et al (2019) Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate. Carbohydr Polym 221:10–20. https://doi.org/10.1016/j.carbpol.2019.05.085

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Yang C, Wang Y, Xie Y et al (2019) Oat protein-shellac nanoparticles as a delivery vehicle for resveratrol to improve bioavailability in vitro and in vivo. Nanomedicine 14:2853–2871. https://doi.org/10.2217/nnm-2019-0244

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Jackson EW (2017) US20170105379 High Protein Oat Species. https://www.freepatentsonline.com/20170105379.pdf. Accessed 15 Nov 2020

Download references


This work was supported by CERCA Programme (Generalitat de Catalunya).

Author information



Corresponding author

Correspondence to Fatma Boukid.

Ethics declarations

Conflict of interest

The authors declare that there are no conlicts of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boukid, F. Oat proteins as emerging ingredients for food formulation: where we stand?. Eur Food Res Technol 247, 535–544 (2021). https://doi.org/10.1007/s00217-020-03661-2

Download citation


  • Oat protein
  • Extraction
  • Techno-functionality
  • Health benefits
  • Allergenicity