Antioxidant, antidiabetic and identification of phenolic constituents from Potentilla discolor Bge.

Abstract

The objective of this study was to investigate the antioxidant and enzyme inhibitory activity, and characterize the bioactive constituents of the phenolic extract of Potentilla discolor Bge. Dry material of Potentilla discolor Bge. was extracted with 80% ethanol solution to obtain the crude phenolic extract (CPE) with the total phenolic content (TPC) of 20.40 ± 0.69 mg of gallic acid equivalents per gram of dry material (mg GAE/g DM). After purified with AB-8 macroporous resin, TPC of the purified phenolic extract (PPE) (353.65 ± 5.50 mg GAE/g DM) was much higher than that of the CPE. PPE exhibited stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity than CPE and 2,6-Di-tert-butyl-4-methylphenol (BHT), with the IC50 values of 0.030 ± 0.002 mg/mL and 0.059 ± 0.002 mg/mL, respectively. The total antioxidant activities of PPE and BHT were similar, and were higher than CPE. PPE was found to significantly inhibit α-amylase and α-glucosidase with IC50 values of 0.966 ± 0.072 and 2.431 ± 0.088 mg/mL, respectively. Finally, using UPLC-TOF–MS/MS technology, 35 compounds were tentatively identified, including 12 phenolic acids, 23 flavonoids and their derivatives, 29 of which have been discovered for the first time in Potentilla discolor Bge. These results suggested that PPE had the potential to be used as an antioxidant and anti-diabetic component in functional foods.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

ABTS:

2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

BHT:

2,6-Di-tert-butyl-4-methylphenol

CPE:

Crude phenolic extract

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

ESI:

Electrospray ionization

mg GAE/g DM:

Milligram of gallic acid equivalents per gram of dry material

PPE:

Purified phenolic extract

TIC:

Total ion chromatogram

TPC:

Total phenolic content

UPLC-TOF–MS/MS:

Ultra performance liquid chromatography-time of flight-mass spectrometry/mass spectrometry

References

  1. 1.

    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agri Food Chem 47(10):3954–3962

    Google Scholar 

  2. 2.

    Kwon YI, Apostolidis E, Shetty K (2008) In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol 99(8):2981–2988

    CAS  PubMed  Google Scholar 

  3. 3.

    Lu Y-h, Tian C-r, Gao C-y, Wang X-y, Yang X, Chen Y-x, Liu Z-z (2019) Phenolic profile, antioxidant and enzyme inhibitory activities of Ottelia acuminata, an endemic plant from southwestern China. Ind Crop Prod 138:111423

    CAS  Google Scholar 

  4. 4.

    Sarikurkcu C, Kirkan B, Ozer MS, Ceylan O, Atilgan N, Cengiz M, Tepe B (2018) Chemical characterization and biological activity of Onosma gigantea extracts. Ind Crop Prod 115:323–329

    CAS  Google Scholar 

  5. 5.

    Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP (2013) The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 141(3):2170–2176

    CAS  PubMed  Google Scholar 

  6. 6.

    Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B (2012) Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 60(36):8924–8929

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yang J, Chen H, Zhang L, Wang QA, Lai MX (2010) Anti-diabetic effect of standardized extract of Potentilla discolor Bunge and identification of its active components. Drug Develop Res 71(2):127–132

    CAS  Google Scholar 

  8. 8.

    Li Z, Jie Y, Xiao-Qing C, Ke Z, Xiao-Dong W, Hong C, Qiang W, Mao-Xiang LJ (2010) Antidiabetic and antioxidant effects of extracts from Potentilla discolor Bunge on diabetic rats induced by high fat diet and streptozotocin. J Ethnopharmacol 132(2):518–524

    Google Scholar 

  9. 9.

    Chengwu S, Long H, Lin R, Zhiwen Z, Xiaohui P, Shanggong Y, Nianbai F (2012) Anti-hyperglycemic effect of Potentilla discolor decoction on obese-diabetic (Ob-db) mice and its chemical composition. Fitoterapia 83(8):1474–1483

    Google Scholar 

  10. 10.

    Zhang J, Liu C, Huang RZ, Chen HF, Wang FX (2017) Three new C-27-carboxylated-lupane-triterpenoid derivatives from Potentilla discolor Bunge and their in vitro antitumor activities. PLoS ONE 12(4):e0175502

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Joven J, Espinel E, Rull A, Aragones G, Rodriguez-Gallego E, Camps J, Micol V, Herranz-Lopez M, Menendez JA, Borras I, Segura-Carretero A, Alonso-Villaverde C, Beltran-Debon R (2012) Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. BBA Gen Subj 7:94–99

    Google Scholar 

  12. 12.

    Xi L, Mu T, Sun H (2015) Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chem 172:166–174

    CAS  PubMed  Google Scholar 

  13. 13.

    Kubola J, Siriamornpun S (2008) Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 110(4):881–890

    CAS  PubMed  Google Scholar 

  14. 14.

    Marmouzi I, Kharbach M, El Jemli M, Bouyahya A, Cherrah Y, Bouklouze A, Vander Heyden Y, Faouzi MEA (2019) Products, Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Ind Crop Prod 132:134–139

    CAS  Google Scholar 

  15. 15.

    Uysal S, Aktumsek A (2015) A phytochemical study on Potentilla anatolica: an endemic Turkish plant. Ind Crop Prod 76:1001–1007

    CAS  Google Scholar 

  16. 16.

    Pan Y, Wei L, Zhu Z, Liang Y, Huang C, Wang H, Wang K (2012) Processing of Siraitia grosvenori’ leaves: extraction of antioxidant substances. Biomass Bioenerg 36:419–426

    CAS  Google Scholar 

  17. 17.

    Yang Q, Zhao M, Lin L (2016) Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chem 194:900–907

    CAS  PubMed  Google Scholar 

  18. 18.

    Wang C, Shi L, Fan L, Ding Y, Zhao S, Liu Y, Ma C (2013) Optimization of extraction and enrichment of phenolics from pomegranate (Punica granatum L.) leaves. Ind Crop Prod 42:587–594

    CAS  Google Scholar 

  19. 19.

    Feng S, Luo Z, Tao B, Chen C (2015) Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT-Food Sci Technol 60(2):970–976

    CAS  Google Scholar 

  20. 20.

    Liu Y, Liu J, Chen X, Liu Y, Di D (2010) Preparative separation and purification of lycopene from tomato skins extracts by macroporous adsorption resins. Food Chem 123(4):1027–1034

    CAS  Google Scholar 

  21. 21.

    Zou Y, Zhao M, Yang K, Lin L, Wang Y (2017) Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes. J Chromatogr B 1060:443–450

    CAS  Google Scholar 

  22. 22.

    Wei Z, Luo M, Zhao C, Wang W, Zhang L, Zu Y, Li C, Li T, Fu Y (2013) An efficient preparative procedure for main flavone aglycones from Equisetum palustre L. using macroporous resins followed by gel resins flash chromatography. Sep Purif Technol 118:680–689

    CAS  Google Scholar 

  23. 23.

    Lin S, Lai TC, Chen L, Kwok HF, Cheung PCK (2014) Antioxidant and Antiangiogenic Properties of Phenolic Extract from Pleurotus tuber-regium. J Agric Food Chem 62(39):9488–9498

    CAS  PubMed  Google Scholar 

  24. 24.

    Li K, Yao F, Du J, Deng X, Li C (2018) Persimmon tannin decreased the glycemic response through decreasing the digestibility of starch and inhibiting α-amylase, α-glucosidase, and intestinal glucose uptake. J Agric Food Chem 66(7):1629–1637

    CAS  PubMed  Google Scholar 

  25. 25.

    Kwon YII, Vattem DA, Kalidas S (2006) Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Cli Nutr 15(1):107–118

    Google Scholar 

  26. 26.

    Wang N, Zhu F, Shen M, Qiu L, Tang M, Xia H, Chen L, Yuan Y, Ma S, Chen K (2019) Network pharmacology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge. J Ethnopharmacol 241:111905

    CAS  PubMed  Google Scholar 

  27. 27.

    Ammar S, del Mar CM, Belguith-Hadrich O, Segura-Carretero A, Bouaziz M (2015) Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis. Food Funct 6(12):3663–3677

    CAS  PubMed  Google Scholar 

  28. 28.

    Zhang G, Chen S, Zhou W, Meng J, Deng K, Zhou H, Hu N, Suo Y (2018) Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity. Food Chem 269:150–156

    CAS  PubMed  Google Scholar 

  29. 29.

    Aouey B, Samet AM, Fetoui H, Simmonds MSJ, Bouaziz M (2016) Anti-oxidant, anti-inflammatory, analgesic and antipyretic activities of grapevine leaf extract (Vitis vinifera) in mice and identification of its active constituents by LC-MS/MS analyses. Biomed Pharmacother 84:1088–1098

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang Z, Zhu W, Liu H, Wu G, Song M, Yang B, Yang D, Wang Q, Kuang H (2018) Simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin in beagle dog plasma by UPLC-ESI-MS/MS and Its application in a pharmacokinetic study after oral administration extracts of Ledum palustre L. Molecules 23(9):2285

    PubMed Central  Google Scholar 

  31. 31.

    Song C, Huang L, Rong L, Zhou Z, Peng X, Yu S, Fang N (2012) Anti-hyperglycemic effect of Potentilla discolor decoction on obese-diabetic (Ob-db) mice and its chemical composition. Fitoterapia 83(8):1474–1483

    CAS  PubMed  Google Scholar 

  32. 32.

    Alvarez-Fernandez MA, Hornedo-Ortega R, Cerezo AB, Troncoso AM, Garcia-Parrilla MC (2014) Effects of the strawberry (Fragaria ananassa) purée elaboration process on non-anthocyanin phenolic composition and antioxidant activity. Food Chem 164:104–112

    CAS  PubMed  Google Scholar 

  33. 33.

    Lee J-H, Johnson JV, Talcott ST (2005) Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J Agric Food Chem 53(15):6003–6010

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhu H-L, Chen G, Chen S-N, Wang Q-R, Wan L, Jian S-P (2019) Characterization of polyphenolic constituents from Sanguisorba officinalis L. and its antibacterial activity. Eur Food Res Technol 245(7):1487–1498

    CAS  Google Scholar 

  35. 35.

    Zhang L, Xu L, Ye Y-h, Zhu M-f, Li J, Tu Z-c, Yang S-h, Liao H (2019) Phytochemical profiles and screening of α-glucosidase inhibitors of four Acer species leaves with ultra-filtration combined with UPLC-QTOF-MS/MS. Ind Crop Prod 129:156–168

    CAS  Google Scholar 

  36. 36.

    González D, Lobo M, Gloria M, Concepción S-M, Ancos Begoña DE (2014) Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res Int 57:51–60

    Google Scholar 

  37. 37.

    Cheng T, Ye J, Li H, Dong H, Xie N, Mi N, Zhang Z, Zou J, Jin H, Zhang W (2019) Hybrid multidimensional data acquisition and data processing strategy for comprehensive characterization of known, unknown and isomeric compounds from the compound Dan Zhi Tablet by UPLC-TWIMS-QTOFMS. RSC Adv 9(16):8714–8727

    CAS  Google Scholar 

  38. 38.

    Oliveras-López M-J, Cerezo AB, Escudero-López B, Cerrillo I, Berná G, Martín F, García-Parrilla MC, Fernández-Pachón M-S (2016) Changes in orange juice (poly)phenol composition induced by controlled alcoholic fermentation. Anal Methods UK 8(46):8151–8164

    Google Scholar 

  39. 39.

    Yang J, Wen XD, Jia BX, Mao Q, Wang Q, Lai MX (2011) Quality evaluation of potentilla discolor by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation tandem mass spectrometry. Phytochem Anal 22(6):547–554

    CAS  PubMed  Google Scholar 

  40. 40.

    Khallouki F, Haubner R, Ricarte I, Erben G, Klika K, Ulrich CM, Owen RW (2015) Identification of polyphenolic compounds in the flesh of Argan (Morocco) fruits. Food Chem 179:191–198

    CAS  PubMed  Google Scholar 

  41. 41.

    Baskaran R, Pullencheri D, Somasundaram R (2016) Characterization of free, esterified and bound phenolics in custard apple (Annona squamosa L.) fruit pulp by UPLC-ESI-MS/MS. Food Res Int 82:121–127

    CAS  Google Scholar 

  42. 42.

    Shoko T, Maharaj VJ, Naidoo D, Tselanyane M, Nthambeleni R, Khorombi E, Apostolides Z (2018) Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complem Altern M 18(1):54

    Google Scholar 

  43. 43.

    Mustapa AN, Martin Á, Mato RB, Cocero MJ (2015) Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind Crop Prod 74:83–94

    CAS  Google Scholar 

  44. 44.

    Garzón GA, Narváez-Cuenca C-E, Vincken J-P, Gruppen H (2017) Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chem 217:364–372

    PubMed  Google Scholar 

  45. 45.

    Zengin G, Diuzheva A, Jekő J, Cziáky Z, Bulut G, Dogan A, Haznedaroglu MZ, Rengasamy KR, Lobine D, Bahadori MB (2018) HPLC–MS/MS-based metabolic profiling and pharmacological properties of extracts and infusion obtained from Amelanchier parviflora var. dentata. Ind Crop Prod 124:699–706

    CAS  Google Scholar 

  46. 46.

    Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96(1):107–116

    CAS  PubMed  Google Scholar 

  47. 47.

    Santos SAO, Villaverde JJ, Freire CSR, Domingues MRM, Neto CP, Silvestre AJD (2012) Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Ind Crop Prod 39:120–127

    CAS  Google Scholar 

  48. 48.

    Li R, Liu S-k, Song W, Wang Y, Li Y-j, Qiao X, Liang H, Ye M (2014) Chemical analysis of the Tibetan herbal medicine Carduus acanthoides by UPLC/DAD/qTOF-MS and simultaneous determination of nine major compounds. Anal Methods UK 6(18):7181–7189

    CAS  Google Scholar 

  49. 49.

    An H, Wang H, Lan Y, Hashi Y, Chen S (2013) Simultaneous qualitative and quantitative analysis of phenolic acids and flavonoids for the quality control of Apocynum venetum L. leaves by HPLC-DAD-ESI-IT-TOF-MS and HPLC-DAD. J Pharmmaceut Biomed 85:295–304

    CAS  Google Scholar 

  50. 50.

    Li C, Seeram NP (2018) Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves. J Sep Sci 41(11):2331–2346

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the International Science and Technology Cooperation Program of China (Project No. 2011DFA32770), the Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (Project No. SKLF-ZZB-201517, SKLF-ZZA-201610), the Science and Technology Program of Jiangxi Province (Project No. 20143ACG70015), and the National Natural Science Foundation of China (Project No. 31701651) for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ping Yu or Zheling Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Wang, P., Huang, J. et al. Antioxidant, antidiabetic and identification of phenolic constituents from Potentilla discolor Bge.. Eur Food Res Technol (2020). https://doi.org/10.1007/s00217-020-03551-7

Download citation

Keywords

  • Potentilla discolor Bge.
  • Phenolics
  • Antioxidant activity
  • Inhibition activity
  • UPLC-TOF–MS/MS