Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds


Processing citrus fruits results in significant amount of wastes; however, citrus by-products still contain high amounts of polyphenolic and other bioactive value-added compounds. In addition, bergamot (Citrus bergamia) wastes contain two compounds—brutieridin and melitidin—which exhibit statin-like properties. Recently, novel fermented products containing bioactive compounds received increasing attention because of their health-promoting functions. In this study, the bioconversion of citrus wastes in vinegars with high content in bioactive and aromatic compounds was performed, detecting a high permanence at the end of the process of the main compounds of interest, especially brutieridin and melitidin. In addition, the sensory analysis of the vinegars was performed, obtaining good performances. According to the adopted preselection procedure, 50 out of the 54 strains of acetic acid bacteria were excluded because of their low aptitude to grow in the tested conditions. The best vinegar was produced from citrus wine at pH 2.90 using the Acetobacter aceti strain DSM_3508T as microbial starter. This research has demonstrated—for the first time—the possibility to produce citrus vinegar at high content of brutieridin and melitidin and other bioactive compounds using selected microbial starters.

This is a preview of subscription content, log in to check access.


  1. 1.

    Coll MD, Coll L, Laencina J, Tomás-Barberán FA (1998) Recovery of flavanones from wastes of industrially processed lemons. Z Lebensm Unters Forsch A 206:404–407.

    CAS  Article  Google Scholar 

  2. 2.

    Gargouri B, Ammar S, Verardo V, Besbes S, Segura-Carretero A, Bouaziz M (2017) RP-HPLC-DAD-ESI-TOF-MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus Limon by-product and their antioxidant activity. Eur Food Res Technol 243:2011–2024.

    CAS  Article  Google Scholar 

  3. 3.

    Sharma K, Mahato N, Cho MH, Lee YR (2017) Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV (2018) Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. Eur Food Res Technol 244:1353–1365.

    CAS  Article  Google Scholar 

  5. 5.

    Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH (2019) Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from Citrus wastes. Foods 8:e523.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pernice R, Borriello G, Ferracane R, Borrelli RC, Cennamo F, Ritieni A (2009) Bergamot: a source of natural antioxidants for functionalized fruit juices. Food Chem 112:545–550.

    CAS  Article  Google Scholar 

  7. 7.

    Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103:2056–2064.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Conidi C, Cassano A, Drioli E (2011) A membrane-based study for the recovery of polyphenols from bergamot juice. J Membr Sci 375:182–190.

    CAS  Article  Google Scholar 

  9. 9.

    Di Donna L, De Luca G, Mazzotti F, Napoli A, Salerno R, Taverna D, Sindona G (2009) Statin-like principles of bergamot fruit: isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod 72:1352–1354.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Di Donna L, Gallucci G, Malaj N, Romano E, Tagarelli A, Sindona G (2011) Recycling of industrial essential oil waste: brutieridin and melitidin, two anticholesterolemic active principles from bergamot albedo. Food Chem 125:438–441.

    CAS  Article  Google Scholar 

  11. 11.

    Cai Y, Xing G, Shen T, Zhang S, Rao J, Shi R (2017) Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 16:251.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fiorillo M, Peiris-Pagès M, Sanchez-Alvarez R, Bartella L, Di Donna L, Dolce V, Sindona G, Sotgia F, Cappello AR, Lisanti MP (2018) Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signaling and mitochondrial metabolism. BBA Bioenergy.

    Article  Google Scholar 

  13. 13.

    Giuffrè AM, Zappia C, Capocasale M, Poiana M, Sidari R, Di Donna L, Bartella L, Sindona G, Corradini G, Giudici P, Caridi A (2019) Vinegar production to valorise Citrus bergamia by-products. Eur Food Res Technol 245:667–675.

    CAS  Article  Google Scholar 

  14. 14.

    Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int J Food Microbiol 106:209–212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    La China S, Zanichelli G, De Vero L, Gullo M (2018) Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: a mini review. Biotechnol Lett 40:1289–1302.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    De Vero L, Gullo M, Giudici P (2017) In: Yücel Şengün İ (ed) Acetic acid bacteria: fundamentals and food applications. 1st edn. CRC Press, Taylor & Francis Group, Boca Raton.

  17. 17.

    Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392.

    Article  Google Scholar 

  18. 18.

    Boesch C, Trcek J, Sievers M, Teuber M (1998) Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21:220–229.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Schüller G, Hertel C, Hammes WP (2000) Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50:2013–2020.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gullo M, Verzelloni E, Canonico M (2014) Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem 49:1571–1579.

    CAS  Article  Google Scholar 

  21. 21.

    De Vero L, Boniotti MB, Budroni M, Buzzini P, Cassanelli S, Comunian R, Gullo M, Logrieco AF, Mannazzu I, Musumeci R, Perugini I, Perrone G, Pulvirenti A, Romano P, Turchetti B, Varese GC (2019) Preservation, characterization and exploitation of microbial biodiversity: the perspective of the Italian network of culture collections. Microorganisms 7:685.

    Article  Google Scholar 

  22. 22.

    Cejudo-Bastante C, Castro-Mejías R, Natera-Marín R, García-Barroso C, Durán-Guerrero E (2016) Chemical and sensory characteristics of orange based vinegar. J Food Sci Technol 53:3147–3156.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cejudo-Bastante C, Durán-Guerrero E, García-Barroso C, Castro-Mejías R (2018) Comparative study of submerged and surface culture acetification process for orange vinegar. J Sci Food Agric 98:1052–1060.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen Y, Huang Y, Bai Y, Fu C, Zhou M, Gao B, Wang C, Li D, Hu Y, Xu N (2017) Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT Food Sci Technol 84:753–763.

    CAS  Article  Google Scholar 

  25. 25.

    Lin S-H, Huang K-J, Weng C-F, Shiuan D (2015) Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des Dev Ther 9:3313–3324.

    CAS  Article  Google Scholar 

  26. 26.

    Mei-Ling W, Jih-Terng W, Youk-Meng C (2004) Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem 86:609–615.

    CAS  Article  Google Scholar 

  27. 27.

    Gullo M, Zanichelli G, Verzelloni E, Lemmetti F, Giudici P (2016) Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode. Process Biochem 51:1129–1139.

    CAS  Article  Google Scholar 

  28. 28.

    Gullo M, De Vero L, Giudici P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75:2585–2589.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology Article ID 952943.

  30. 30.

    Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16.

    Article  Google Scholar 

  31. 31.

    Gálvez MC, Barroso CG, Pérez-Bustamante JA (1994) Analysis of polyphenolic compounds of different vinegar samples. Eur Food Res Technol 199:29–31.

    Article  Google Scholar 

  32. 32.

    Miyake Y, Suzuki E, Ohya S, Fukumoto S, Hiramitsu M, Sakaida K, Osawa T, Furuichi Y (2006) Lipid-lowering effect of eriocitrin, the main flavonoid in lemon fruit, in rats on a high-fat and high-cholesterol diet. J Food Sci 71:S633–S637.

    CAS  Article  Google Scholar 

  33. 33.

    Aslan E, Guler C, Adem S (2016) In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J Enzyme Inhib Med Chem 31:314–317.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gürsul C, Akdemir FNE, Akkoyun T, Can İ, Gül M, Gülçin İ (2016) Protective effect of naringin on experimental hind limb ischemia/reperfusion injury in rats. J Enzyme Inhib Med Chem 31:56–61.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68:29–39.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gong N, Zhang B, Yang D, Gao Z, Du G, Lu Y (2015) Development of new reference material neohesperidin for quality control of dietary supplements. J Sci Food Agric 95:1885–1891.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zhang JL, Huang MQ, Sun GB (2014) Study on free amino acid composition of 4 famous vinegars in China. J Food Saf Qual 5:3124–3131

    Google Scholar 

  38. 38.

    Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42:1614–1619.

    CAS  Article  Google Scholar 

  39. 39.

    Oberoi HS, Vadlani PV, Madl RL, Saida L, Pabeykoon J (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Sci Food Agric 58:3422–3429.

    CAS  Article  Google Scholar 

  40. 40.

    Ben-Shalom N, Pinto R (1999) Natural colloidal particles: the mechanism of the specific interaction between hesperidin and pectin. Carbohydr Polym 38:179–182

    CAS  Article  Google Scholar 

  41. 41.

    Davidson MH, McDonald A (1998) Fiber: forms and functions. Nutr Res 18:617–624

    CAS  Article  Google Scholar 

  42. 42.

    Service AAR (1956) Chemistry and technology of Citrus, Citrus products and byproducts. US Government Printing Office, Washington, DC

    Google Scholar 

Download references


We express our endless gratitude to Prof Giovanni Sindona, Prof. Ferdinando Delfino, and Dr. Demetrio Melissari for their irreplaceable contribution concerning study conception and orchestration of the experiments. We express our sincere gratitude to Dr. Nava Domenico, Dr. Giuliano Delfino, and the staff of the Citrus Juices Company (Reggio Calabria) for their collaboration in the realization of the experiments.


The study was not specifically funded; however, Lucia Bartella wishes to thank Italian Ministry of Education, University and Research for its grant n. AIM1899391 - 1 in the framework of the project “Azione I.2, Mobilità dei Ricercatori, PON R&I 2014–2020”.

Author information



Corresponding author

Correspondence to Andrea Caridi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Donna, L., Bartella, L., De Vero, L. et al. Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. Eur Food Res Technol (2020).

Download citation


  • Bioactive compounds
  • Brutieridin
  • Citrus bergamia
  • Melitidin
  • Vinegar