Nutritional and nutraceutical properties of raw and traditionally obtained flour from chestnut fruit grown in Tuscany

Abstract

The study of local chestnut and traditional techniques related to their use and consumption are considered of primary importance to promote their nutritional/nutraceutical values. Fruit of four local chestnut cultivars (‘Carpinese’, ‘Pontecosi’, ‘Capannaccia’ and ‘Morona’) from Garfagnana (Italy) were analysed under nutritional and antioxidant aspects and compared with their flour obtained through a traditional thermal-drying process. Raw fruit contained significative amounts of P, K and Mg (~ 149, 1960 and 50 mg 100 g−1 dry weight, respectively) and they were characterised by a good moisture content (~ 49%) and starch (~ 50 g 100 g−1 dw). The traditional thermal-drying processes affected the carbohydrate content of dried chestnut showing a higher sucrose and lower starch content as compared to raw fruits. Traditional thermal-drying processes negatively influenced also total phenol content (TP) and total antioxidant activity: flours from all cultivars contained lower amounts of TP than raw fruit except for ‘Morona’ in which these compounds remained unchanged. This study provides new useful information about the evaluation of nutritional and nutraceutical characteristics of Tuscany local chestnuts and the effects of a traditional thermal-drying processing method, helping consumers and producers to valorise these “forest products”.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. 1.

    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118. https://doi.org/10.4103/0973-7847.70902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rana J, Paul J (2017) Consumer behavior and purchase intention for organic food: a review and research agenda. J Retail Consum Serv 38:157–165. https://doi.org/10.1016/j.jretconser.2017.06.004

    Article  Google Scholar 

  3. 3.

    Zhou D, Yu H, He F et al (2014) Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 100:270–277. https://doi.org/10.3945/ajcn.113.079152

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bonaccio M, Di Castelnuovo A, De Curtis A et al (2015) Nut consumption is inversely associated with both cancer and total mortality in a Mediterranean population: prospective results from the Moli-sani study. Br J Nutr 114:804–811. https://doi.org/10.1017/S0007114515002378

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Alasalvar C, Bolling BW (2015) Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br J Nutr 113:S68–S78. https://doi.org/10.1017/S0007114514003729

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gold MA, Cernusca MM, Godsey LD (2006) Competitive market analysis: Chestnut producers. Hort Technol 16:360–369. https://doi.org/10.21273/HORTTECH.16.2.0360

    Article  Google Scholar 

  7. 7.

    Beccaro G, Alma A, Bounous G, Gomes-Laranjo J (2019) The chestnut handbook: crop and forest management. CRC Press, Boca Raton

    Google Scholar 

  8. 8.

    Borges OP, Soeiro Carvalho J, Reis Correia P, Paula Silva A (2007) Lipid and fatty acid profiles of Castanea sativa Mill. Chestnuts of 17 native Portuguese cultivars. J Food Compos Anal 20:80–89. https://doi.org/10.1016/j.jfca.2006.07.008

    CAS  Article  Google Scholar 

  9. 9.

    Borges O, Gonçalves B, de Carvalho JLS et al (2008) Nutritional quality of chestnut (Castanea sativa Mill.) cultivars from Portugal. Food Chem 106:976–984. https://doi.org/10.1016/j.foodchem.2007.07.011

    CAS  Article  Google Scholar 

  10. 10.

    De Vasconcelos MC, Bennett RN, Rosa EA, Ferreira-Cardoso JV (2010) Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. J Sci Food Agric 90:1578–1589. https://doi.org/10.1002/jsfa.4016

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Morrone L, Dall’Asta C, Silvanini A, et al (2015) The influence of seasonality on total fat and fatty acids profile, protein and amino acid, and antioxidant properties of traditional Italian flours from different chestnut cultivars. Sci Hortic 192:132–140. https://doi.org/10.1016/j.scienta.2015.04.018

    CAS  Article  Google Scholar 

  12. 12.

    Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB et al (2006) Chemical composition of chestnut cultivars from Spain. Sci Hortic 107:306–314. https://doi.org/10.1016/j.scienta.2005.08.008

    CAS  Article  Google Scholar 

  13. 13.

    Cirlini M, DallAsta C, Silvanini A et al (2012) Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem 134:662–668. https://doi.org/10.1016/j.foodchem.2012.02.151

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Joo YH, Choi IH, Kim DH et al (2018) Effects of chestnut (Castanea sativa) meal supplementation on growth performance, carcass characteristics, and meat quality of pigs. Rev Bras Zootec https://doi.org/10.1590/rbz4720170168

    Article  Google Scholar 

  15. 15.

    Mete M, Dülger Altıner D (2017) Chestnut flour and applications of utilization. Int J Food Eng Res 1:9–17

    Google Scholar 

  16. 16.

    De Vasconcelos MC, Nunes F, Viguera CG et al (2010) Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. Int J Food Sci Technol 45:496–505. https://doi.org/10.1111/j.1365-2621.2009.02155.x

    CAS  Article  Google Scholar 

  17. 17.

    Zhu F (2016) Effect of processing on quality attributes of chestnut. Food Bioprocess Technol 9:1429–1443. https://doi.org/10.1007/s11947-016-1749-3

    CAS  Article  Google Scholar 

  18. 18.

    Kan L, Li Q, Xie S et al (2016) Effect of thermal processing on the physicochemical properties of chestnut starch and textural profile of chestnut kernel. Carbohydr Polym 151:614–623. https://doi.org/10.1016/j.carbpol.2016.06.008

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Bellini E, Giordani E, Marinelli C et al (2009) Marrone del mugello PGI: Nutritional and organoleptic quality of Europea chestnut (Castanea sativa Mill.). Acta Hortic. https://doi.org/10.17660/ActaHortic.2009.844.7

    Article  Google Scholar 

  20. 20.

    FAOSTAT (2017) Food and Agriculture Organization of the United States. https://faostat.fao.org/site/339/default.aspx

  21. 21.

    Castellini A, Palmieri A, Pirazzoli C (2010) Economic aspects of the chestnut market in Italy. Acta Hortic. https://doi.org/10.17660/ActaHortic.2010.866.65

    Article  Google Scholar 

  22. 22.

    Ministero delle Politiche Agricole e Forestali (2003) Disciplinare di produzione “Farina di Neccio della Garfagnana”. Denominazione d’origine protetta. https://www.saporideiparchi.minambiente.it/prodotti/disciplinare/184_1433843873544_farina_neccio_garfagnana.pdf

  23. 23.

    Frati A, Landi D, Marinelli C et al (2014) Nutraceutical properties of chestnut flours: beneficial effects on skeletal muscle atrophy. Food Funct 5:2870–2882. https://doi.org/10.1039/C4FO00353E

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ambito 03: Garfagnana e val di lima. In: Reg. Toscana. https://www.regione.toscana.it/documents/10180/11377097/Ambito+03+Garfagnana.pdf/d44525b3-2bff-4ca7-82b0-2d5c2411f5b6

  25. 25.

    Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    CAS  Article  Google Scholar 

  26. 26.

    Benini O, Saba A, Ferretti V et al (2014) Development and analytical evaluation of a spectrophotometric procedure for the quantification of different types of phosphorus in meat products. J Agric Food Chem 62:1247–1253. https://doi.org/10.1021/jf404187n

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Clark CJ, McGlone VA, Requejo C et al (2003) Dry matter determination in ‘Hass’ avocado by NIR spectroscopy. Postharvest Biol Technol 29:301–308. https://doi.org/10.1016/S0925-5214(03)00046-2

    CAS  Article  Google Scholar 

  28. 28.

    Baldini M, Fabietti F, Giammarioli S, et al (1996) Metodi di analisi utilizzati per il controllo chimico degli alimenti. Roma: Istituto Superiore di Sanità. Rapp ISTISAN 9634.

  29. 29.

    ANKOM (2009) ANKOM, Rapid determination of oil/fat utilizing high temperature solvent extraction-ANKOM technology method 2 AOCS official procedure Am 5-04. ANKOM Technol Macedon, New York

    Google Scholar 

  30. 30.

    ANKOM (2008) ANKOM, crude fiber analysis in feeds by filter bag technique-ANKOM technology method 7, AOCS approved procedure Ba6a-05. ANKOM Technol Macedon, New York

    Google Scholar 

  31. 31.

    Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  32. 32.

    ANKOM (2013) Determining acid detergent lignin in DAISY Incubator-ANKOM method 8. ANKOM Technol Macedon, New York

    Google Scholar 

  33. 33.

    Jones BD (1931) Factors for converting percentage of nitrogen in foods and feeds into percentages of proteins. U S Dep Agriculture, Washington

    Google Scholar 

  34. 34.

    Yusof NL, Rasmusson AG, Gómez Galindo F (2016) Reduction of the nitrate content in baby spinach leaves by vacuum impregnation with sucrose. Food Bioprocess Technol 9:1358–1366. https://doi.org/10.1007/s11947-016-1725-y

    CAS  Article  Google Scholar 

  35. 35.

    Sotelo P, Pérez E, Najar-Rodriguez A et al (2014) Brassica plant responses to mild herbivore stress elicited by two specialist insects from different feeding guilds. J Chem Ecol 40:136–149. https://doi.org/10.1007/s10886-014-0386-4

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. https://doi.org/10.1021/jf0115589

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

  38. 38.

    Ramos-Cabrer AM, Pereira-Lorenzo S (2005) Genetic relationship between Castanea sativa Mill. trees from North-western to South Spain based on morphological traits and isoenzymes. Genet Resour Crop Evol 52:879–890. https://doi.org/10.1007/s10722-003-6094-5

    CAS  Article  Google Scholar 

  39. 39.

    Bounous G (2009) Substainable management of the chestnut plantations to obtain quality produce. Acta Hortic. https://doi.org/10.17660/ActaHortic.2009.815.1

    Article  Google Scholar 

  40. 40.

    Santana LÁ, Angela A, Meireles M (2014) New starches are the trend for industry applications: a review. Food Public Health 4:229–241. https://doi.org/10.5923/j.fph.20140405.04

    Article  Google Scholar 

  41. 41.

    Serdar Ü, Akyüz B, Ceyhan V et al (2018) Horticultural characteristics of chestnut growing in turkey. Erwerbs-Obstbau 60:239–245. https://doi.org/10.1007/s10341-017-0364-4

    Article  Google Scholar 

  42. 42.

    Nazzaro M, Barbarisi C, La Cara F, Volpe MG (2011) Chemical and biochemical characterisation of an IGP ecotype chestnut subjected to different treatments. Food Chem 128:930–936. https://doi.org/10.1016/j.foodchem.2011.03.121

    CAS  Article  Google Scholar 

  43. 43.

    Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition 20:632–644. https://doi.org/10.1016/j.nut.2004.04.001

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132. https://doi.org/10.1016/j.tifs.2017.02.017

    CAS  Article  Google Scholar 

  45. 45.

    Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington

    Google Scholar 

  46. 46.

    Er F, Özcan MM, Duman E, Endes Z (2013) Some chemical properties of chestnut (Castanea Sativa Mill.) fruit collected from different locations in Turkey. Int Anatolia Acad Online J Sci J 1:2148–3183

    Google Scholar 

  47. 47.

    Rodrigues P, Venâncio A, Lima N (2013) Incidence and diversity of the fungal genera Aspergillus and Penicillium in Portuguese almonds and chestnuts. Eur J Plant Pathol 137:197–209. https://doi.org/10.1007/s10658-013-0233-4

    Article  Google Scholar 

  48. 48.

    Kluczkovski AM (2019) Fungal and mycotoxin problems in the nut industry. Curr Opin Food Sci 29:56–63. https://doi.org/10.1016/j.cofs.2019.07.009

    Article  Google Scholar 

  49. 49.

    Mert C, Ertürk Ü (2017) Chemical compositions and sugar profiles of consumed chestnut cultivars in the Marmara region, Turkey. Not Bot Horti Agrobot Cluj-Napoca 45:203–207. https://doi.org/10.15835/nbha45110729

    CAS  Article  Google Scholar 

  50. 50.

    Barreira JCM, Casal S, Ferreira ICFR et al (2009) Nutritional, fatty acid and triacylglycerol profiles of Castanea sativa Mill. cultivars: a compositional and chemometric approach. J Agric Food Chem 57:2836–2842. https://doi.org/10.1021/jf803754u

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Barreira JCM, Casal S, Ferreira ICFR et al (2012) Chemical characterization of chestnut cultivars from three consecutive years: chemometrics and contribution for authentication. Food Chem Toxicol 50:2311–2317. https://doi.org/10.1016/j.fct.2012.04.008

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    McCarthy MA, Meredith FI (1988) Nutrient data on chestnuts consumed in the United States. Econ Bot 42:29–36. https://doi.org/10.1007/BF02859026

    CAS  Article  Google Scholar 

  53. 53.

    De Vasconcelos MC, Bennett RN, Rosa EAS, Ferreira-Cardoso JV (2009) Industrial processing effects on chestnut fruits (Castanea sativa Mill.). 1. Starch, fat, energy and fibre. Int J Food Sci Technol 44:2606–2612. https://doi.org/10.1111/j.1365-2621.2009.02091.x

    CAS  Article  Google Scholar 

  54. 54.

    Correia P, Leitão A, Beirão-da-Costa ML (2009) The effect of drying temperatures on morphological and chemical properties of dried chestnuts flours. J Food Eng 90:325–332. https://doi.org/10.1016/j.jfoodeng.2008.06.040

    Article  Google Scholar 

  55. 55.

    Barreira JCM, Pereira JA, Oliveira MBPP, Ferreira ICFR (2010) Sugars profiles of different chestnut (Castanea sativa Mill.) and almond (Prunus dulcis) cultivars by HPLC-RI. Plant Foods Hum Nutr 65:38–43. https://doi.org/10.1007/s11130-009-0147-7

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Bernárdez MM, De la Montaña MJ, Queijeiro JG (2004) HPLC determination of sugars in varieties of chestnut fruits from Galicia (Spain). J Food Compos Anal 17:63–67. https://doi.org/10.1016/S0889-1575(03)00093-0

    CAS  Article  Google Scholar 

  57. 57.

    Attanasio G, Cinquanta L, Albanese D, Matteo MD (2004) Effects of drying temperatures on physico-chemical properties of dried and rehydrated chestnuts (Castanea sativa). Food Chem 88:583–590. https://doi.org/10.1016/j.foodchem.2004.01.071

    CAS  Article  Google Scholar 

  58. 58.

    Ertan E, Erdal E, Alkan G, Algül BE (2015) Effects of different postharvest storage methods on the quality parameters of chestnuts (Castanea sativa Mill.). HortScience 50:577–581. https://doi.org/10.21273/HORTSCI.50.4.577

    CAS  Article  Google Scholar 

  59. 59.

    Delgado T, Pereira JA, Ramalhosa E, Casal S (2018) Effect of hot air convective drying on sugar composition of chestnut (Castanea sativa Mill.) slices. J Food Process Preserv 42:e13567. https://doi.org/10.1111/jfpp.13567

    CAS  Article  Google Scholar 

  60. 60.

    Chenlo F, Moreira R, Chaguri L, Torres MD (2010) Effects of storage conditions on sugars and moisture content of whole chestnut fruits. J Food Process Preserv. https://doi.org/10.1111/j.1745-4549.2008.00361.x

    Article  Google Scholar 

  61. 61.

    Nomura K, Ogasawara Y, Uemukai H, Yoshida M (1995) Change of sugar content in chestnut during low temperature storage. Acta Hortic. https://doi.org/10.17660/ActaHortic.1995.398.28

    Article  Google Scholar 

  62. 62.

    Barros AIRNA, Nunes FM, Gonçalves B et al (2011) Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem 128:165–172. https://doi.org/10.1016/j.foodchem.2011.03.013

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Gonçalves B, Borges O, Costa HS et al (2010) Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: proximate analysis, fibre, organic acids and phenolics. Food Chem 122:154–160. https://doi.org/10.1016/j.foodchem.2010.02.032

    CAS  Article  Google Scholar 

  64. 64.

    Suárez MH, Galdón BR, Mesa DR et al (2012) Sugars, organic acids and total phenols in varieties of chestnut fruits from Tenerife (Spain). Food Nutr Sci 03:705–715. https://doi.org/10.4236/fns.2012.36096

    CAS  Article  Google Scholar 

  65. 65.

    Ozcan T, Yilmaz-Ersan L, Akpinar-Bayizit A, Delikanli B (2017) Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill). J Food Process Preserv 41:e13156. https://doi.org/10.1111/jfpp.13156

    CAS  Article  Google Scholar 

  66. 66.

    Karkar B, Şahin S, Güneş ME (2018) Antioxidative effect of Turkish chestnut bee pollen on DNA oxidation system and its phenolic compounds. GIDA J Food 43:34–42. https://doi.org/10.15237/gida.GD17055

    Article  Google Scholar 

  67. 67.

    Durazzo A, Turfani V, Azzini E et al (2013) Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem 140:666–671. https://doi.org/10.1016/j.foodchem.2012.09.062

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Xu J (2005) The effect of low-temperature storage on the activity of polyphenol oxidase in Castanea henryi chestnuts. Postharvest Biol Technol 38:91–98. https://doi.org/10.1016/j.postharvbio.2005.05.011

    CAS  Article  Google Scholar 

  69. 69.

    Abbas M, Saeed F, Anjum FM et al (2017) Natural polyphenols: an overview. Int J Food Prop 20:1689–1699. https://doi.org/10.1080/10942912.2016.1220393

    CAS  Article  Google Scholar 

  70. 70.

    Barreira J, Ferreira I, Oliveira M, Pereira J (2008) Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem 107:1106–1113. https://doi.org/10.1016/j.foodchem.2007.09.030

    CAS  Article  Google Scholar 

  71. 71.

    Neri L, Dimitri G, Sacchetti G (2010) Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. J Food Compos Anal 23:23–29. https://doi.org/10.1016/j.jfca.2009.03.002

    CAS  Article  Google Scholar 

  72. 72.

    Doyon M, Labrecque J (2008) Functional foods: a conceptual definition. Br Food J 110:1133–1149. https://doi.org/10.1108/00070700810918036

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Diletta Piccotino for the the assistance with biochemical analysis, Ivo Poli for the technical support and Mario Pioli, the chestnut forest owner, for his help.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

DR, ML, ELP, conceptualization and experimental design; ELP, ML, LM, experiments and data analyses; ELP, LG, CC, writing original draft; ANM, DR, RM, draft revision.

Corresponding author

Correspondence to Marco Landi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contains any studies with human participants or animals performed by any of the authors.

Consent to participate

All the co-authors are fully aware and agree.

Consent for publication

All the co-authors are fully aware and agree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piccolo, E.L., Landi, M., Ceccanti, C. et al. Nutritional and nutraceutical properties of raw and traditionally obtained flour from chestnut fruit grown in Tuscany . Eur Food Res Technol (2020). https://doi.org/10.1007/s00217-020-03541-9

Download citation

Keywords

  • Chemical properties drying process
  • Flour
  • Starch
  • Phenols
  • Soluble sugars