Essential oils as insect repellent agents in food packaging: a review

Abstract

Active food packaging is currently of high demand in food industries to provide protections to food. Food packaging is not only used to store and protect food from the environment, but also to provide functional values with the incorporation of active agent. Essential oils (EOs) extracted from a variety of plants represent active ingredients of natural origin which provide numerous benefits to food, aromatherapy, pharmaceutical, and food packaging industries due to their functional properties. Numerous researches have been carried out in developing active food packaging such as insect repellent packaging containing essential oils. Insect repellent packaging could create safety measures by repelling insect from exterior environment or the inhibition of larvae from food within. In this paper, different application of EOs on different types of food packaging, applications, processing methods, migration of active compounds and performance of insect repellency are reviewed. Future perspectives and applications of insect repellence using safe, natural and more effective strategies are also discussed. EOs as the active insect repellent agents in food packaging offer great opportunities to protect the quality of food. Some important factors such as legislative concerns (e.g. toxicity test, migration of active substances from packaging materials), economics, and further study on the release period of active agent to the environment should be considered to successfully implement insect repellent agents in food packaging.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Singh B, Kaur A (2018) Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT Food Sci Technol 87:93–101. https://doi.org/10.1016/j.lwt.2017.08.077

    CAS  Article  Google Scholar 

  2. 2.

    Mohd Marsin A, Muhamad II (2016) Preparation and characterization of purple sweet potato starch-based edible film with optimized mixing temperature. J Adv Res Mater Sci 16:2289–7992

    Google Scholar 

  3. 3.

    Peterson C, Coats J (2001) Insect repellents—past, present and future! Pestic Outlook. https://doi.org/10.1007/978-3-662-45139-7_144

    Article  Google Scholar 

  4. 4.

    Islam J, Zaman K, Tyagi V et al (2017) Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate. Acta Trop 174:56–63

    CAS  Article  Google Scholar 

  5. 5.

    Songkro S, Hayook N, Jaisawang J et al (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with b-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355. https://doi.org/10.1007/s10847-011-9985-7

    CAS  Article  Google Scholar 

  6. 6.

    Shapiro R (2012) Prevention of vector transmitted diseases with clove oil insect repellent. J Pediatr Nurs 27:346–349. https://doi.org/10.1016/j.pedn.2011.03.011

    Article  PubMed  Google Scholar 

  7. 7.

    Kim I-H, Han J, Na JH et al (2013) Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies. J Food Sci 78:E229–E237. https://doi.org/10.1111/1750-3841.12006

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Mohd Marsin A, Muhamad II (2016) Effects of kappa carrageenan and glycerol in purple sweet potato starch based edible film. J Teknol 78:163–168. https://doi.org/10.11113/jt.v78.4507

    Article  Google Scholar 

  9. 9.

    Kłyś M, Malejky N, Nowak-Chmura M (2017) The repellent effect of plants and their active substances against the beetle storage pests. J Stored Prod Res 74:66–77. https://doi.org/10.1016/j.jspr.2017.10.006

    Article  Google Scholar 

  10. 10.

    Arlian LG (2002) Arthropod allergens and human health. Annu Rev Entomol 47:395–433. https://doi.org/10.1146/annurev.ento.47.091201.145224

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Whalon et al (1985) Insect repellent coatings. US Patent US005843215A. https://patents.google.com/patent/US5843215A/en

  12. 12.

    Radwan N, Gaylord PA (1996) Controlled-release insect repellent device. US Patent US005688509A. https://patentimages.storage.googleapis.com/42/8f/11/37f874168c2abd/US5688509.pdf

  13. 13.

    Radwan MN, Allin GP (1990) United States Patent [19]. US005688509A

  14. 14.

    Shiomo N (2000) Insect Repellent Food Packaging Materials. WO 00/00022

  15. 15.

    Jo HJ, Park KM, Na JH et al (2015) Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. J Stored Prod Res 61:114–118. https://doi.org/10.1016/j.jspr.2015.01.005

    Article  Google Scholar 

  16. 16.

    Licciardello F, Muratore G, Suma P et al (2013) Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum). Innov Food Sci Emerg Technol 19:173–180. https://doi.org/10.1016/j.ifset.2013.05.002

    CAS  Article  Google Scholar 

  17. 17.

    Wong KKY, Signal FA, Campion SH, Motion RL (2005) Citronella as an insect repellent in food packaging. J Agric Food Chem 53:4633–4636. https://doi.org/10.1021/jf050096m

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Berthold-Pluta A, Stasiak-Różańska L, Pluta A, Garbowska M (2019) Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. Eur Food Res Technol 245:1137–1147. https://doi.org/10.1007/s00217-018-3218-x

    CAS  Article  Google Scholar 

  19. 19.

    Osman Mohamed Ali E, Shakil NA, Rana VS et al (2017) Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind Crops Prod 108:379–387. https://doi.org/10.1016/j.indcrop.2017.06.061

    CAS  Article  Google Scholar 

  20. 20.

    Ruiz-Navajas Y, Viuda-Martos M, Sendra E et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30:386–392. https://doi.org/10.1016/j.foodcont.2012.07.052

    CAS  Article  Google Scholar 

  21. 21.

    Wang CX, Wang LX, Li CY et al (2020) Anti-proliferation activities of three bioactive components purified by high-speed counter-current chromatography in essential oil from ginger. Eur Food Res Technol. https://doi.org/10.1007/s00217-020-03446-7

    Article  Google Scholar 

  22. 22.

    Kindl M, Bucar F, Jelić D et al (2019) Comparative study of polyphenolic composition and anti-inflammatory activity of Thymus species. Eur Food Res Technol 245:1951–1962. https://doi.org/10.1007/s00217-019-03297-x

    CAS  Article  Google Scholar 

  23. 23.

    Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62. https://doi.org/10.1016/j.tifs.2015.12.001

    CAS  Article  Google Scholar 

  24. 24.

    Wyrwa J, Barska A (2017) Innovations in the food packaging market: active packaging. Eur Food Res Technol 243:1681–1692. https://doi.org/10.1007/s00217-017-2878-2

    CAS  Article  Google Scholar 

  25. 25.

    Guenther E (1972) The essential oils. R.E. Krieger Publishing Company, New York

    Google Scholar 

  26. 26.

    Tavares M, da Silva MRM, de Oliveira Siqueira LB et al (2018) Trends in insect repellent formulations: a review. Int J Pharm 539:190–209. https://doi.org/10.1016/j.ijpharm.2018.01.046

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manage 256:2166–2174. https://doi.org/10.1016/j.foreco.2008.08.008

    Article  Google Scholar 

  28. 28.

    Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol 130:325–337

    CAS  Article  Google Scholar 

  29. 29.

    Isman MB (2005) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

    CAS  Article  Google Scholar 

  30. 30.

    FDA F and DA (2016) Code of federal regulations (CFR). Title 21: Food and drugs. Chapter I—food and drug administration, department of health and human services, subchapter B—food for human consumption (continued), Part 182—substances generally recognized as safe (GRAS). In: Ofiice Fed. Regist. Washingt. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20. Accessed 30 Dec 2019

  31. 31.

    Arancibia MY, López-Caballero ME, Gómez-Guillén MC, Montero P (2014) Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control 44:7–15. https://doi.org/10.1016/j.foodcont.2014.03.025

    CAS  Article  Google Scholar 

  32. 32.

    Rehman JU, Ali A, Khan IA (2014) Plant based products: Use and development as repellents against mosquitoes: a review. Fitoterapia 95:65–74. https://doi.org/10.1016/J.FITOTE.2014.03.002

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Chung SK, Seo JY, Lim JH et al (2011) Barrier property and penetration traces in packaging films against Plodia interpunctella (Hübner) larvae and Tribolium castaneum (Herbst) adults. J Stored Prod Res 47:101–105. https://doi.org/10.1016/j.jspr.2011.01.005

    Article  Google Scholar 

  34. 34.

    Kim I-H, Song AY, Han J et al (2014) Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil. J Food Sci 79:2023–2030. https://doi.org/10.1111/1750-3841.12642

    CAS  Article  Google Scholar 

  35. 35.

    Hou X, Fields P, Taylor W (2004) The effect of repellents on penetration into packaging by stored-product insects. J Stored Prod Res 40:47–54. https://doi.org/10.1016/S0022-474X(02)00063-2

    CAS  Article  Google Scholar 

  36. 36.

    Jesser EN, Werdin-González JO, Murray AP, Ferrero AA (2017) Efficacy of essential oils to control the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J Asia Pac Entomol 20:1122–1129. https://doi.org/10.1016/j.aspen.2017.08.004

    Article  Google Scholar 

  37. 37.

    Lee S-H, Chang Y, Na JH, Han J (2017) Development of anti-insect multilayered films for brown rice packaging that prevent Plodia interpunctella infestation. J Stored Prod Res 72:153–160. https://doi.org/10.1016/j.jspr.2017.05.001

    Article  Google Scholar 

  38. 38.

    Utono IM, Coote C, Gibson G (2014) Field study of the repellent activity of ’Lem-ocimum’-treated double bags against the insect pests of stored sorghum, Tribolium castaneum and Rhyzopertha dominica, in northern Nigeria. J Stored Prod Res 59:222–230. https://doi.org/10.1016/j.jspr.2014.03.005

    Article  Google Scholar 

  39. 39.

    Atef M, Rezaei M, Behrooz R (2015) Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll 45:150–157. https://doi.org/10.1016/j.foodhyd.2014.09.037

    CAS  Article  Google Scholar 

  40. 40.

    Zhang Z, Bian L, Sun X et al (2015) Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). PEST Manag Sci 71:96–104. https://doi.org/10.1002/ps.3771

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod 67:403–413. https://doi.org/10.1016/j.indcrop.2015.01.062

    CAS  Article  Google Scholar 

  42. 42.

    Torres A, Ilabaca E, Rojas A et al (2017) Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Eur Polym J 89:195–210. https://doi.org/10.1016/j.eurpolymj.2017.01.019

    CAS  Article  Google Scholar 

  43. 43.

    Yahyaoui M, Gordobil O, Herrera R et al (2016) Development of novel antimicrobial films based on poly (lactic acid) and essential oils. React 109:1–8. https://doi.org/10.1016/j.reactfunctpolym.2016.09.001

    CAS  Article  Google Scholar 

  44. 44.

    Javidi Z, Hosseini SF, Rezaei M (2016) Development of flexible bactericidal films based on poly(lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT Food Sci Technol 72:251–260. https://doi.org/10.1016/j.lwt.2016.04.052

    CAS  Article  Google Scholar 

  45. 45.

    Jo HJ, Park KM, Min SC et al (2013) Development of an anti-insect sachet using a polyvinyl alcohol-cinnamon oil polymer strip against Plodia interpunctella. J Food Sci 78:1713–1720. https://doi.org/10.1111/1750-3841.12268

    CAS  Article  Google Scholar 

  46. 46.

    Sung S-Y, Sin LT, Tee T-T et al (2014) Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innov Food Sci Emerg Technol 26:406–414. https://doi.org/10.1016/j.ifset.2014.05.009

    CAS  Article  Google Scholar 

  47. 47.

    Zhang Y, Ma Q, Critzer F et al (2015) Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil. LWT Food Sci Technol 64:423–430. https://doi.org/10.1016/j.lwt.2015.05.008

    CAS  Article  Google Scholar 

  48. 48.

    Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146:144–150. https://doi.org/10.1016/j.ijfoodmicro.2011.02.011

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Karami Z, Rezaeian I, Zahedi P, Abdollahi M (2013) Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. J Appl Polym Sci 129:756–766. https://doi.org/10.1002/app.38683

    CAS  Article  Google Scholar 

  50. 50.

    Zhu Z, Min T, Zhang X, Wen Y (2019) Microencapsulation of thymol in poly(lactide-co-glycolide) (PLGA): physical and antibacterial properties. Materials (Basel). https://doi.org/10.3390/ma12071133

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Mann RS, Tiwari S, Smoot JM et al (2012) Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae). J Appl Entomol 136:87–96. https://doi.org/10.1111/j.1439-0418.2010.01592.x

    CAS  Article  Google Scholar 

  52. 52.

    Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44:126–135. https://doi.org/10.1016/J.JSPR.2007.08.003

    CAS  Article  Google Scholar 

  53. 53.

    Chung SK, Seo JY, Lim JH et al (2013) Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci. https://doi.org/10.1111/1750-3841.12111

    Article  PubMed  Google Scholar 

  54. 54.

    Muhamad II, Abdul Karim N (2015) Trends, convenience, and safety issues of ready meals. In: Food Engineering Series. Springer, pp 105–123

  55. 55.

    Mohd Marsin A, Muhamad II (2020) Application of box behnken design with response surface methodology for optimizing oxygen colour indicator for active packaging. Malays J Anal Sci 24:42–52

    Google Scholar 

  56. 56.

    Van Haute S, Raes K, Devlieghere F, Sampers I (2017) Combined use of cinnamon essential oil and MAP/vacuum packaging to increase the microbial and sensorial shelf life of lean pork and salmon. Food Packag Shelf Life 12:51–58. https://doi.org/10.1016/j.fpsl.2017.02.004

    Article  Google Scholar 

  57. 57.

    Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62:366–371. https://doi.org/10.1002/ps.1157

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Wen P, Zhu D-H, Wu H et al (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376. https://doi.org/10.1016/j.foodcont.2015.06.005

    CAS  Article  Google Scholar 

  59. 59.

    Balaji APB, Mishra P, Suresh Kumar RS et al (2015) Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B Biointerfaces 128:370–378. https://doi.org/10.1016/J.COLSURFB.2015.02.034

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Cran MJ, Rupika LAS, Sonneveld K et al (2010) Release of naturally derived antimicrobial agents from LDPE films. J Food Sci 75:126–133. https://doi.org/10.1111/j.1750-3841.2009.01506.x

    CAS  Article  Google Scholar 

  61. 61.

    Wattananawinrat K, Threepopnatkul P, Kulsetthanchalee C (2014) Morphological and thermal properties of LDPE/EVA blended films and development of antimicrobial activity in food packaging film. In: Energy Procedia. Elsevier Ltd, pp 1–9

  62. 62.

    Herath SLR (2010) Development and evaluation of low density polyethylene-based antimicrobial food packaging films containing natural agents. Victoria University

  63. 63.

    Mistry Y (2006) Development of LDPE-based antimicrobial films for food packaging. Faculty of Health, Engineering and Science Victoria University

  64. 64.

    Ribeiro-Santos R, Sanches-Silva A, Motta JFG et al (2017) Combined use of essential oils applied to protein base active food packaging: Study in vitro and in a food simulant. Eur Polym J 93:75–86. https://doi.org/10.1016/j.eurpolymj.2017.03.055

    CAS  Article  Google Scholar 

  65. 65.

    Majid I, Ahmad Nayik G, Mohammad Dar S, Nanda V (2018) Novel food packaging technologies: Innovations and future prospective. J Saudi Soc Agric Sci 17:454–462

    Google Scholar 

  66. 66.

    Navarro S, Zehavi D, Angel S, Finkelman S (2007) Natural nontoxic insect repellent packaging materials. In: Wilson CL (ed) Intelligent and active packaging for fruits and vegetables. CRC Press, Boca Raton, pp 201–236

    Google Scholar 

  67. 67.

    Ribeiro-Santos R, de Melo NR, Andrade M, Sanches-Silva A (2017) Potential of migration of active compounds from protein-based films with essential oils to a food and a food simulant. Packag Technol Sci 30:791–798. https://doi.org/10.1002/pts.2334

    CAS  Article  Google Scholar 

  68. 68.

    Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A (2017) Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol 61:132–140. https://doi.org/10.1016/j.tifs.2016.11.021

    CAS  Article  Google Scholar 

  69. 69.

    Ayala-Zavala JF, Del-Toro-Sánchez L, Alvarez-Parrilla E, González-Aguilar GA (2008) High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J Food Sci 73:R41–R47

    CAS  Article  Google Scholar 

  70. 70.

    Salafranca J, Pezo D, Nerín C (2009) Assessment of specific migration to aqueous simulants of a new active food packaging containing essential oils by means of an automatic multiple dynamic hollow fibre liquid phase microextraction system. J Chromatogr A 1216:3731–3739. https://doi.org/10.1016/j.chroma.2009.03.001

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Muhamad II, Khairuddin N, Ling LH (2011) Effect of lauric acid addition on the microbial efficacy of chitosan-based film. J Teknol 54:101–109. https://doi.org/10.11113/jt.v54.94

    Article  Google Scholar 

  72. 72.

    Brody AL, Bugusu B, Han JH et al (2008) Innovative food packaging solutions. J Food Sci. https://doi.org/10.1111/j.1750-3841.2008.00933.x

    Article  PubMed  Google Scholar 

  73. 73.

    Kuorwel KK, Cran MJ, Sonneveld K et al (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT Food Sci Technol 50:432–438. https://doi.org/10.1016/j.lwt.2012.08.023

    CAS  Article  Google Scholar 

  74. 74.

    Ramos M, Beltrán A, Peltzer M et al (2014) Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT Food Sci Technol 58:470–477. https://doi.org/10.1016/j.lwt.2014.04.019

    CAS  Article  Google Scholar 

  75. 75.

    Chaubey MK (2007) Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Afr J Agric Res 2:596–600

    Google Scholar 

  76. 76.

    Harismah K, Vitasari D, Mirzaei M, et al (2017) Protection capacity of mosquito repellent ink from citronella (Cymbopogon nardus L.) and clove leaf oils (Syzygium aromaticum) againts Aedes aegypti. In: AIP Conference Proceedings, p 020023

  77. 77.

    Sajo MV, Song SB, Bajgai J et al (2015) Applicability of citronella oil (Cymbopogon winteratus) for the prevention of mosquito-borne diseases in the rural area of Tikapur, far-western Nepal. Rural Remote Health 15(4):1–10

    Google Scholar 

  78. 78.

    Huang TH, Tien NY, Luo YP (2015) An in vitro bioassay for the quantitative evaluation of mosquito repellents against Stegomyia aegypti (=Aedes aegypti) mosquitoes using a novel cocktail meal. Med Vet Entomol 29:238–244. https://doi.org/10.1111/mve.12114

    Article  PubMed  Google Scholar 

  79. 79.

    Sharififard M, Safdari F, Siahpoush A, Kassiri H (2016) Evaluation of some plant essential oils against the brown-banded cockroach, Supella longipalpa (Blattaria: Ectobiidae): a mechanical vector of human pathogens. J Arthropod Borne Dis 10:528–537

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Müller GC, Junnila A, Kravchenko VD et al (2008) Indoor protection against mosquito and sand fly bites: a comparison between Citronella, Linalool, and Geraniol Candles. J Am Mosq Control Assoc 24:150–153. https://doi.org/10.2987/8756-971x(2008)24[150:ipamas]2.0.co;2

    Article  PubMed  Google Scholar 

  81. 81.

    Chattopadhyay P, Dhiman S, Borah S et al (2015) Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop 147:45–53. https://doi.org/10.1016/j.actatropica.2015.03.027

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Song AY, Choi HY, Lee ES et al (2018) Development of anti-insect microencapsulated polypropylene films using a large scale film coating system. J Food Sci 83:1011–1016. https://doi.org/10.1111/1750-3841.14105

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Emilie D, Mallent M, Menut C et al (2015) Behavioral response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 plant extracts. J Econ Entomol 108:1890–1901. https://doi.org/10.1093/jee/tov118

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Park SJ, Yu MH, Kim JE et al (2012) Repellent efficacy and safety evaluation of IR3535 derivative against Aedes albopictus, Culex pipiens pallens and Aedes togoi. Entomol Res 42:299–307. https://doi.org/10.1111/j.1748-5967.2012.00473.x

    CAS  Article  Google Scholar 

  85. 85.

    Youssefi MR, Tabari MA, Esfandiari A et al (2019) Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules. https://doi.org/10.3390/molecules24101867

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bhavya ML, Chandu AGS, Devi SS et al (2019) In-vitro evaluation of antimicrobial and insect repellent potential of supercritical-carbon dioxide (SCF-CO2) extracts of selected botanicals against stored product pests and foodborne pathogens. J Food Sci Technol. https://doi.org/10.1007/s13197-019-04141-6

    Article  PubMed  Google Scholar 

  87. 87.

    Oliveira AP, Santos AA, Santana AS et al (2018) Essential oil of Lippia sidoides and its major compound thymol: toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot 112:33–38. https://doi.org/10.1016/j.cropro.2018.05.011

    CAS  Article  Google Scholar 

  88. 88.

    Salama MM, Taher EE, El-Bahy MM (2012) Molluscicidal and mosquitocidal activities of the essential oils of thymus capitatus Hoff. ET link. and marrubium vulgare L. Rev Inst Med Trop Sao Paulo 54:281–286. https://doi.org/10.1590/S0036-46652012000500008

    Article  PubMed  Google Scholar 

  89. 89.

    Blackwell A, Evans KA, Strang RHC, Cole M (2004) Toward development of neem-based repellents against the Scottish Highland biting midge Culicoides impunctatus. Med Vet Entomol 18:449–452. https://doi.org/10.1111/j.0269-283X.2004.00515.x

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Kebede Y, Gebre-Michael T, Balkew M (2010) Laboratory and field evaluation of neem (Azadirachta indica A. Juss) and Chinaberry (Melia azedarach L.) oils as repellents against Phlebotomus orientalis and P. bergeroti (Diptera: Psychodidae) in Ethiopia. Acta Trop 113:145–150. https://doi.org/10.1016/j.actatropica.2009.10.009

    Article  PubMed  Google Scholar 

  91. 91.

    Renkema JM, Wright D, Buitenhuis R, Hallett RH (2016) Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci Rep 6:1–10. https://doi.org/10.1038/srep21432

    CAS  Article  Google Scholar 

  92. 92.

    Khater HF, Ramadan MY, El-Madawy RS (2009) Lousicidal, ovicidal and repellent efficacy of some essential oils against lice and flies infesting water buffaloes in Egypt. Vet Parasitol 164:257–266. https://doi.org/10.1016/j.vetpar.2009.06.011

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Costa AA, Naspi CV, Lucia A et al (2017) Repellent and larvicidal activity of the essential oil from Eucalyptus nitens against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 54:670–676. https://doi.org/10.1093/jme/tjw222

    CAS  Article  Google Scholar 

  94. 94.

    Zhu J, Zeng X, O’neal M et al (2008) Mosquito larvicidal activity of botanical-based mosquito repellents. J Am Mosq Control Assoc 24:161–168. https://doi.org/10.2987/8756-971x(2008)24[161:mlaobm]2.0.co;2

    Article  PubMed  Google Scholar 

  95. 95.

    Carroll SP, Loye J (2006) Field test of a lemon eucalyptus repellent against Leptoconops biting midges. J Am Mosq Control Assoc 22:483–485. https://doi.org/10.2987/8756-971x(2006)22[483:ftoale]2.0.co;2

    Article  PubMed  Google Scholar 

  96. 96.

    Kulma M, Bubova T, Koleska D et al (2018) Laboratory evaluation of repellency of traditional Czech homemade repellents against Aedes aegypti. Epidemiol Mikrobiol Imunol 67:129–133

    CAS  PubMed  Google Scholar 

  97. 97.

    Plata-Rueda A, Campos JM, da Silva RG et al (2018) Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicol Environ Saf 156:263–270. https://doi.org/10.1016/j.ecoenv.2018.03.033

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Kim J, Park NH, Na JH, Han J (2016) Development of Natural Insect-Repellent Loaded Halloysite Nanotubes and their Application to Food Packaging to Prevent Plodia interpunctella Infestation. J Food Sci 81:E1956–E1965. https://doi.org/10.1111/1750-3841.13373

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Sharawi SE, Abd-Alla SM, Omara SM, Al-Ghamdi KM (2013) Surface contact toxicity of clove and rosemary oils against American cockroach, Periplaneta americana (L.). Afr Entomol 21:324–332

    Article  Google Scholar 

  100. 100.

    Zhu BCR, Henderson G, Chen F et al (2001) Evaluation of vetiver oil and seven insect-active essential oils against the formosan subterranean termite. J Chem Ecol 27:1617–1625. https://doi.org/10.1023/A:1010410325174

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Wong KKY, Signal FA, Campion SH, Motion RL (2005) Citronella as an insect repellant in food packaging. J Agric Food Chem 2005:4633–4636. https://doi.org/10.1021/jf050096m

    CAS  Article  Google Scholar 

  102. 102.

    Souza AC, Goto GEO, Mainardi JA et al (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci Technol 54:346–352. https://doi.org/10.1016/j.lwt.2013.06.017

    CAS  Article  Google Scholar 

  103. 103.

    de Melo AAM, Geraldine RM, Silveira MFA et al (2012) Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. Braz J Microbiol 43:1419–1427. https://doi.org/10.1590/S1517-83822012000400025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Hafsa J, Ali Smach M, Ben Khedher MR et al (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT Food Sci Technol 68:356–364. https://doi.org/10.1016/j.lwt.2015.12.050

    CAS  Article  Google Scholar 

  105. 105.

    Wu J, Sun X, Guo X et al (2017) Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac Fish 2:185–192. https://doi.org/10.1016/j.aaf.2017.06.004

    Article  Google Scholar 

  106. 106.

    Han Y, Yu M, Wang L (2018) Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag Shelf Life 15:35–42. https://doi.org/10.1016/j.fpsl.2017.11.001

    Article  Google Scholar 

  107. 107.

    Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA et al (2014) Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.09.070

    Article  PubMed  Google Scholar 

  108. 108.

    Wen P, Zhu DH, Feng K et al (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196:996–1004. https://doi.org/10.1016/j.foodchem.2015.10.043

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Tawakkal ISMA, Cran MJ, Bigger SW (2016) Release of thymol from poly(lactic acid)-based antimicrobial films containing kenaf fibres as natural filler. LWT Food Sci Technol 66:629–637. https://doi.org/10.1016/j.lwt.2015.11.011

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge Universiti Teknologi Malaysia for financial support through the Malaysian Research Universities Network (MRUN) under project no. RJ130000.7851.4L868.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marsin, A.M., Muhamad, I.I., Anis, S.N.S. et al. Essential oils as insect repellent agents in food packaging: a review. Eur Food Res Technol 246, 1519–1532 (2020). https://doi.org/10.1007/s00217-020-03511-1

Download citation

Keywords

  • Essential oil
  • Insect repellence
  • Food packaging
  • Active agent