An overview of microencapsulation in the food industry: opportunities, challenges, and innovations


While consumer trends are leading to a surge of functional foods, the addition of bioactive compounds to food matrixes presents a series of challenges such as lack of stability or unpleasant organoleptic characteristics. Microencapsulation is not only a useful tool to overcome them, but it also allows the development of products with improved features that allow the differentiation from competitors and personalization of products. Despite consumers increasingly recognize the benefits of technological solutions, the healthy living and clean labeling trends are also posing challenges for microencapsulation. Thus, considering the limited range of suitable encapsulant materials allowed for food, material selection is becoming the main challenge that formulators face. In this review, opportunities, challenges, and innovations of microencapsulation in the food industry have been discussed. In addition, an overview on microencapsulation, reasons for microencapsulation, its techniques, and examples of applications in the food industry have also been provided.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Ozkan G, Franco P, De Marco I et al (2019) A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 272:494–506.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Pathak C, Vaidya FU, Pandey SM (2019) Mechanism for development of nanobased drug delivery system. Appl Target Nano Drugs Deliv Syst.

    Article  Google Scholar 

  3. 3.

    Katouzian I, Jafari SM (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48.

    CAS  Article  Google Scholar 

  4. 4.

    Gaonkar AG, Vasisht N, Khare AR, Sobel R (2014) Microencapsulation in the food industry: a practical implementation guide. Elsevier Science, Amsterdam

    Google Scholar 

  5. 5.

    Desai KGH, Jin Park H (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23:1361–1394.

    CAS  Article  Google Scholar 

  6. 6.

    Shishir MRI, Xie L, Sun C et al (2018) Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 78:34–60.

    CAS  Article  Google Scholar 

  7. 7.

    Dias MI, Ferreira ICFR, Barreiro MF (2015) Microencapsulation of bioactives for food applications. Food Funct 6:1035–1052.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347.

    CAS  Article  Google Scholar 

  9. 9.

    Sohail A, Turner MS, Coombes A, Bhandari B (2013) The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioprocess Technol 6:2763–2769.

    Article  Google Scholar 

  10. 10.

    Coronel-Aguilera CP, San Martín-González MF (2015) Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT Food Sci Technol 62:187–193.

    CAS  Article  Google Scholar 

  11. 11.

    Fuchs M, Turchiuli C, Bohin M et al (2006) Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng 75:27–35.

    CAS  Article  Google Scholar 

  12. 12.

    Benita S (2006) Microencapsulation: methods and industrial applications. Taylor & Francis, UK

    Google Scholar 

  13. 13.

    Rocha GA, Fávaro-Trindade CS, Grosso CRF (2012) Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod Process 90:37–42.

    CAS  Article  Google Scholar 

  14. 14.

    Ding WK, Shah NP (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74:M100–M107.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Aizpurua-Olaizola O, Navarro P, Vallejo A et al (2016) Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chem 190:614–621.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Esser-Kahn AP, Odom SA, Sottos NR et al (2011) Triggered release from polymer capsules. Macromolecules 44:5539–5553.

    CAS  Article  Google Scholar 

  17. 17.

    Lakkis JM (2007) Encapsulation and controlled release technologies in food systems, 1st edn. Blackwell Publishing, USA

    Google Scholar 

  18. 18.

    Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251.

    CAS  Article  Google Scholar 

  19. 19.

    Bakry AM, Abbas S, Ali B et al (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf.

    Article  Google Scholar 

  20. 20.

    Frascareli EC, Silva VM, Tonon RV, Hubinger MD (2012) Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod Process 90:413–424.

    CAS  Article  Google Scholar 

  21. 21.

    Pimparade MB, Morott JT, Park J-B et al (2015) Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro-in vivo evaluations. Int J Pharm 487:167–176.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sohi H, Sultana Y, Khar RK (2004) Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm 30:429–448.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Laokuldilok N, Thakeow P, Kopermsub P, Utama-ang N (2016) Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem 194:695–704.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18:184–190.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Augustin MA, Sanguansri L (2015) Challenges and solutions to incorporation of nutraceuticals in foods. Annu Rev Food Sci Technol 6:463–477.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Carvalho IT, Estevinho BN, Santos L (2016) Application of microencapsulated essential oils in cosmetic and personal healthcare products—a review. Int J Cosmet Sci 38:109–119.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shamaei S, Seiiedlou SS, Aghbashlo M et al (2017) Microencapsulation of walnut oil by spray drying: effects of wall material and drying conditions on physicochemical properties of microcapsules. Innov Food Sci Emerg Technol 39:101–112.

    CAS  Article  Google Scholar 

  28. 28.

    Santana AA, Cano-Higuita DM, de Oliveira RA, Telis VRN (2016) Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chem 212:1–9.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Huang E, Quek SY, Fu N et al (2019) Co-encapsulation of coenzyme Q10 and vitamin E: a study of microcapsule formation and its relation to structure and functionalities using single droplet drying and micro-fluidic-jet spray drying. J Food Eng 247:45–55.

    CAS  Article  Google Scholar 

  30. 30.

    Tonon RV, Pedro RB, Grosso CRF, Hubinger MD (2012) Microencapsulation of flaxseed oil by spray drying: effect of oil load and type of wall material. Dry Technol 30:1491–1501.

    CAS  Article  Google Scholar 

  31. 31.

    Gharsallaoui A, Roudaut G, Chambin O et al (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121.

    CAS  Article  Google Scholar 

  32. 32.

    Alvim ID, Stein MA, Koury IP et al (2016) Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci Technol 65:689–694.

    CAS  Article  Google Scholar 

  33. 33.

    Oxley JD (2012)Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In: Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, pp 110–130

  34. 34.

    Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Dry Technol 20:419–447.

    CAS  Article  Google Scholar 

  35. 35.

    Hemati M, Cherif R, Saleh K, Pont V (2003) Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol 130:18–34.

    CAS  Article  Google Scholar 

  36. 36.

    Villa MP, Bertín DE, Cotabarren IM et al (2016) Fluidized-bed melt granulation: coating and agglomeration kinetics and growth regime prediction. Powder Technol 300:61–72.

    CAS  Article  Google Scholar 

  37. 37.

    Caballero B, Trugo LC, Finglas PM (2003) Encyclopedia of food sciences and nutrition. Academic Press, USA

    Google Scholar 

  38. 38.

    Ballesteros LF, Ramirez MJ, Orrego CE et al (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    McClements DJ (2015) Food emulsions: principles practices and techniques. CRC Press, USA

    Google Scholar 

  40. 40.

    Kaushik P, Dowling K, Barrow CJ, Adhikari B (2015) Microencapsulation of omega-3 fatty acids: a review of microencapsulation and characterization methods. J Funct Foods 19:868–881.

    CAS  Article  Google Scholar 

  41. 41.

    Sartori T, Consoli L, Hubinger MD, Menegalli FC (2015) Ascorbic acid microencapsulation by spray chilling: production and characterization. LWT Food Sci Technol 63:353–360.

    CAS  Article  Google Scholar 

  42. 42.

    Calva-Estrada SJ, Mendoza MR, García O et al (2018) Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. Powder Technol 323:416–423.

    CAS  Article  Google Scholar 

  43. 43.

    Fung F, Wang H-S, Menon S (2018) Food safety in the 21st century. Biomed J 41:88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Angus A (2017) Top 10 Global Consumer Trends for 2018. Emerging forces shaping consumer behaviour. Accessed 3 Sept 2019

  45. 45.

    Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E (2019) Trends in the food and sports nutrition industry: a review. Crit Rev Food Sci Nutr.

    Article  PubMed  Google Scholar 

  46. 46.

    Bigliardi B, Galati F (2013) Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol 31:118–129.

    CAS  Article  Google Scholar 

  47. 47.

    Ye Q, Georges N, Selomulya C (2018) Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends Food Sci Technol 78:167–179.

    CAS  Article  Google Scholar 

  48. 48.

    Global Market Insights (2017) Food Encapsulation Market. Accessed 10 Sept 2018

  49. 49.

    Maughan RJ, Shirreffs SM (2012) Nutrition for sports performance: issues and opportunities. Proc Nutr Soc 71:112–119.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Euromonitor (2018) 8 Food Trends for 2018. Accessed 18 Sept 2019

  51. 51.

    Rathod G, Kairam N (2018) Preparation of omega 3 rich oral supplement using dairy and non-dairy based ingredients. J Food Sci Technol 55:760–766.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Trifković K, Đorđević V, Balanč B et al (2016) Novel approaches in nanoencapsulation of aromas and flavors. Encapsulations.

    Article  Google Scholar 

  53. 53.

    Wind J, Rangaswamy A (2001) Customerization: the next revolution in mass customization. J Interact Mark 15:13–32

    Article  Google Scholar 

  54. 54.

    Casanova F, Santos L (2016) Encapsulation of cosmetic active ingredients for topical application—a review. J Microencapsul 33:1–17.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Singh MN, Hemant KSY, Ram M, Shivakumar HG (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5:65–77

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Bjørndal T, Fernandez-Polanco J, Lappo A, Lem A (2013) Consumer trends and preferences in the demand for food. Accessed 13 Sept 2019

  57. 57.

    Kang J, Hustvedt G (2014) Building trust between consumers and corporations: the role of consumer perceptions of transparency and social responsibility. J Bus Ethics 125:253–265.

    Article  Google Scholar 

  58. 58.

    Hamari J, Sjöklint M, Ukkonen A (2016) The sharing economy: why people participate in collaborative consumption. J Assoc Inf Sci Technol 67:2047–2059.

    Article  Google Scholar 

  59. 59.

    PricewaterhouseCoopers (2013) Breakthrough innovation and growth. innovationsurvey. Accessed 5 Nov 2019

  60. 60.

    Hancox D (2018) The unstoppable rise of veganism: How a fringe movement went mainstream. The Guardian. Accessed 16 Oct 2018

  61. 61.

    Radnitz C, Beezhold B, DiMatteo J (2015) Investigation of lifestyle choices of individuals following a vegan diet for health and ethical reasons. Appetite 90:31–36.

    Article  PubMed  Google Scholar 

  62. 62.

    Nesterenko A, Alric I, Silvestre F, Durrieu V (2013) Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crops Prod 42:469–479.

    CAS  Article  Google Scholar 

  63. 63.

    Nielsen (2017) U.S. Homescan Panel Protein Survey. Accessed 14 Oct 2018

  64. 64.

    Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ et al (2019) Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 90:111–132.

    Article  Google Scholar 

  65. 65.

    Nazzaro F, Orlando P, Fratianni F, Coppola R (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23:182–186.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Magnuson B, Munro I, Abbot P et al (2013) Review of the regulation and safety assessment of food substances in various countries and jurisdictions. Food Addit Contam 30:1147–1220.

    CAS  Article  Google Scholar 

  67. 67.

    Vimala Bharathi SK, Moses JA, Anandharamakrishnan C (2018) Nano and microencapsulation using food grade polymers. Polymers for food applications. Springer International Publishing, Cham, pp 357–400

    Google Scholar 

  68. 68.

    Anandharamakrishnan C, Ishwarya SP (2015) Spray drying techniques for food ingredient encapsulation. Wiley, London

    Google Scholar 

  69. 69.

    Mokhtari S, Jafari SM, Khomeiri M et al (2017) The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Res Int 96:19–26.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Kong L, Bhosale R, Ziegler GR (2018) Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Res Int 105:446–452.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Scarfato P, Avallone E, Galdi MR et al (2017) Preparation, characterization, and oxygen scavenging capacity of biodegradable α-tocopherol/PLA microparticles for active food packaging applications. Polym Compos 38:981–986.

    CAS  Article  Google Scholar 

  72. 72.

    Cheng M, Wang J, Zhang R et al (2019) Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int J Biol Macromol 141:259–267.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Rodríguez-Félix F, Del-Toro-Sánchez CL, Tapia-Hernández JA (2019) A new design for obtaining of white zein micro- and nanoparticles powder: antisolvent-dialysis method. Food Sci Biotechnol.

    Article  PubMed  Google Scholar 

  74. 74.

    Martins E, Poncelet D, Renard D (2017) A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. React Funct Polym 114:49–57.

    CAS  Article  Google Scholar 

  75. 75.

    Torres O, Murray B, Sarkar A (2016) Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol 55:98–108.

    CAS  Article  Google Scholar 

  76. 76.

    Sverdlov Arzi R (2018) Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Deliv Rev 131:79–100.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B et al (2015) Micro- and nanoparticles by electrospray: advances and applications in foods. J Agric Food Chem 63:4699–4707.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F et al (2019) Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J Food Sci 84:2883–2897.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ et al (2019) Gallic acid-loaded zein nanoparticles by electrospraying process. J Food Sci 84:818–831.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Tapia-Hernández JA, Rodríguez-Félix DE, Plascencia-Jatomea M et al (2018) Porous wheat gluten microparticles obtained by electrospray: preparation and characterization. Adv Polym Technol 37:2314–2324.

    CAS  Article  Google Scholar 

  81. 81.

    Jafari SM (2017) Nanocapsule formation by electrospraying. In: Jafari S (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Elsevier Academic Press, USA, pp 320–345

    Google Scholar 

  82. 82.

    Wang B, Sheng H, Shi Y et al (2015) Recent advances for microencapsulation of flame retardant. Polym Degrad Stab 113:96–109.

    CAS  Article  Google Scholar 

  83. 83.

    Rodrigues SN, Martins IM, Fernandes IP et al (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149:463–472.

    CAS  Article  Google Scholar 

  84. 84.

    Agüero L, Zaldivar-Silva D, Peña L, Dias ML (2017) Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym 168:32–43.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Mohammadi N, Ehsani MR, Bakhoda H (2018) Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. Flavour Fragr J 33:357–366.

    CAS  Article  Google Scholar 

  86. 86.

    Zhao X-H, Tang C-H (2016) Spray-drying microencapsulation of CoQ10 in olive oil for enhanced water dispersion, stability and bioaccessibility: influence of type of emulsifiers and/or wall materials. Food Hydrocoll 61:20–30.

    CAS  Article  Google Scholar 

  87. 87.

    Polyakov NE, Kispert LD (2015) Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery. Carbohydr Polym 128:207–219.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Arenas-Jal M, Suñé-Negre JM, García-Montoya E (2020) Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf 19:574–594.

    CAS  Article  Google Scholar 

  89. 89.

    Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4:120–127.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Konar N, Palabiyik I, Toker OS, Sagdic O (2016) Chewing gum: production, quality parameters and opportunities for delivering bioactive compounds. Trends Food Sci Technol 55:29–38.

    CAS  Article  Google Scholar 

  91. 91.

    Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41:1–21.

    CAS  Article  Google Scholar 

  92. 92.

    Varanoske AN, Hoffman JR, Church DD et al (2019) Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids 51:49–60.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Sagalowicz L, Mezzenga R, Negrini R, Martiel I (2015) Controlled release of caffeine (US20170367984A1). Accessed 11 Nov 2019

  94. 94.

    Shug A, Gulbrandsen C (2003) Delayed release carnitine (US20030170290A1). Accessed 1 Nov 2019

  95. 95.

    Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162:56–67.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Lagaron JM, Lopez-Rubio A, Fabra MJ, Pérez-Masiá R (2014) Microencapsulation and packaging—value added solutions to product development. Microencapsulation in the food industry. Academic Press, USA, pp 399–408

    Google Scholar 

  97. 97.

    Lim L-T (2014) Application of nano- and microencapsulated materials to food packaging. Nano- and microencapsulation for foods. Wiley, Chichester, pp 301–323

    Google Scholar 

  98. 98.

    Kim I-H, Han J, Na JH et al (2013) Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies. J Food Sci 78:E229–E237.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Lidert Z (2005) Microencapsulation: an overview of the technology landscape. Deliv Syst Handb Pers Care Cosmet Prod.

    Article  Google Scholar 

  100. 100.

    Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Petrusic S, Koncar V (2016) Controlled release of active agents from microcapsules embedded in textile structures. Smart Text Appl.

    Article  Google Scholar 

  102. 102.

    Salaün F (2016) Microencapsulation technology for smart textile coatings. Act Coatings Smart Text.

    Article  Google Scholar 

Download references


This work was financially supported by the Industrial Doctorate Program of the Agency for Management of University and Research Grants (AGAUR), under Grant 2015DI021.

Author information




All authors contributed to the study conception and design. Conceptualization, investigation, writing—original draft and funding acquisition was performed by MAJ, and JMS-N and EG-M were involved in writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marta Arenas-Jal.

Ethics declarations

Conflicts of interest

As a part of an industrial PhD program, M. Arenas-Jal works as R&D manager for Vitae Health Innovation, S.L.

Consent for publication

This publication has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arenas-Jal, M., Suñé-Negre, J.M. & García-Montoya, E. An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. Eur Food Res Technol 246, 1371–1382 (2020).

Download citation


  • Microencapsulation
  • Food industry
  • Applications
  • Opportunities
  • Challenges
  • Innovations