Skip to main content
Log in

Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: changes in antioxidant activity and related bioactive compounds during ripening

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The antioxidant activity, and total phenolic, flavonoid, anthocyanin and carotenoid contents were evaluated for five fruits native to the Atlantic Rainforest. For fully ripen fruits, total flavonoid content was significantly higher (p = 0.05) for fruits of butia (12.3 mg/100 g) and uvaia (11.2 mg/100 g) (Table 2). Fruits of lemon guava and gabiroba presented total phenolic contents (over 4,300 mg GAE/100 g) significantly higher (p = 0.05) than the other fruits used in this study. Total anthocyanin content (TAC) for fully ripen strawberry guava (216 mg/100 g) was significantly higher (p = 0.05) than the TAC found for any of the other fruits used in this study (Table 2). Total carotenoid content (176 mg/100 g) was significantly higher (p = 0.05) in fruits of butia. The antioxidant activity of gabiroba fruits (26.45 mM TROLOX equivalents/g DM, DPPH) was significantly higher (p = 0.05) among the fruits used in this study. Reduction in total phenolic and flavonoid contents was found for gabiroba, strawberry guava and uvaia fruits following ripening, except for butia (Table 2). Progressive reduction in antioxidant activity paralleled reductions in total phenolic and flavonoid contents. A remarkable increase in total anthocyanins from 18 to 216 mg/100 g was found for strawberry guava fruits during ripening. Data from this study demonstrate that various virtually unknown fruits native to the Atlantic Rainforest, especially gabiroba, present very high antioxidant activity and very high amounts of compounds known to promote human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms satish. R Soc Chem 5:27986–28006

    CAS  Google Scholar 

  2. Ellong EN, Billard C, Adenet S, Rochefort K (2015) Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutr Sci 06:299–313. https://doi.org/10.4236/fns.2015.63030

    Article  CAS  Google Scholar 

  3. Wang J, Zhang Z, Huang R (2013) Regulation of ascorbic acid synthesis in plants. Plant Signal Behav 8:18–20. https://doi.org/10.4161/psb.24536

    Article  CAS  Google Scholar 

  4. Wojtunik-kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-hajnos M (2016) The influence of common free radicals and antioxidants on development of Alzheimer’ s Disease. Biomed Pharmacother 78:39–49. https://doi.org/10.1016/j.biopha.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  5. Aune D, Giovannucci E, Boffetta P et al (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-A systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46:1029–1056. https://doi.org/10.1093/ije/dyw319

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blasa M, Gennari L, Angelino D, Ninfali P (2010) Fruit and vegetable antioxidants in health. In: Watson R, Preedy V (eds) Bioactive foods in promoting health: fruits and vegetables. Academic Press, San Diego, pp 37–58

    Chapter  Google Scholar 

  7. Habauzit V, Milenkovic D, Morand C (2014) Vascular protective effects of fruit polyphenols. In: Watson R, Preedy V, Zibadi S (eds) Polyphenols in human health and disease, vol 1, 1st edn. Academic Press, San Diego, pp 875–893

    Chapter  Google Scholar 

  8. Pereira-Netto AB (2018) Tropical fruits as natural, exceptionally rich, sources of bioactive compounds. Int J Fruit Sci 18:231–242. https://doi.org/10.1080/15538362.2018.1444532

    Article  Google Scholar 

  9. Mittermeier RA, Robles Gil P, Hoffmann M et al (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX/Agrupación Sierra Madre, Mexico City

    Google Scholar 

  10. Joly CA, Metzger JP, Tabarelli M et al (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives Tansley review experiences from the Brazilian Atlantic Forest : ecological findings and conservation initiatives. New Phytol 204:459–473. https://doi.org/10.1111/nph.12989

    Article  PubMed  Google Scholar 

  11. Bicas JL, Molina G, Dionísio AP et al (2011) Volatile constituents of exotic fruits from Brazil. Food Res Int 44:1843–1855. https://doi.org/10.1016/j.foodres.2011.01.012

    Article  CAS  Google Scholar 

  12. Qiu Y, Liu Q, Beta T (2009) Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions. J Agric Food Chem 57:7543–7551. https://doi.org/10.1021/jf901074b

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Hydamaka AW, Lowry L, Beta T (2009) Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent Eur J Biol 4:499–506. https://doi.org/10.2478/s11535-009-0041-1

    Article  CAS  Google Scholar 

  14. Anton AA, Ross KA, Beta T et al (2008) Effect of pre-dehulling treatments on some nutritional and physical properties of navy and pinto beans (Phaseolus vulgaris L.). LWT Food Sci Technol 41:771–778. https://doi.org/10.1016/j.lwt.2007.05.014

    Article  CAS  Google Scholar 

  15. Rufino M, Alves SM, de Brito RE ES, et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  16. Subhasree B, Baskar R, Laxmi Keerthana R et al (2009) Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem 115:1213–1220. https://doi.org/10.1016/j.foodchem.2009.01.029

    Article  CAS  Google Scholar 

  17. Fuleki T, Francis FJ (1968) Quantative methods for analysis. 2. determination of total anthocyanin and degeadition index in cranberries. J Food Sci 33:78–83. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x doi

    Article  CAS  Google Scholar 

  18. Talcott ST, Howard LR (1999) Phenolic autoxidation is responsible for color degradation in processed carrot puree. J Agric Food Chem 47:2109–2115. https://doi.org/10.1021/jf981134n

    Article  CAS  PubMed  Google Scholar 

  19. Gross (1991) Carotenoids. In: Gross J (ed) Pigments in vegetables-chlorophylls and carotenoids. Van Nostrand Reinhold, New York, pp 75–278

    Chapter  Google Scholar 

  20. Paull R, Duarte O (2011) Tropical Fruits, 2nd edn. CAB International, London

    Google Scholar 

  21. (2018) Food FAO and Agriculture Organization of the United Nations. http://www.fao.org/economic/est/est-commodities/tropical-fruits/en/. Accessed 10 Oct 2018

  22. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 3:1033–1036. https://doi.org/10.1016/j.foodchem.2010.12.026

    Article  CAS  Google Scholar 

  23. Celli GB, Pereira-Netto AB, Beta T (2011) Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Res Int 44:2442–2451. https://doi.org/10.1016/j.foodres.2010.12.036

    Article  CAS  Google Scholar 

  24. Wang SY, Chen CT, Wang CY (2009) The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem 112:676–684. https://doi.org/10.1016/j.foodchem.2008.06.032

    Article  CAS  Google Scholar 

  25. McCook-Russell KP, Nair MG, Facey PC, Bowen-Forbes CS (2012) Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem 134:1069–1073. https://doi.org/10.1016/j.foodchem.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  26. Najda A, Dyduch-Siemińska M, Dyduch J, Gantner M (2014) Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Ann Agric Environ Med 21:339–343. https://doi.org/10.5604/1232-1966.1108601

    Article  CAS  PubMed  Google Scholar 

  27. Vasco C, Ruales J, Kamal-Eldin A (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 111:816–823. https://doi.org/10.1016/j.foodchem.2008.04.054

    Article  CAS  Google Scholar 

  28. Haminiuk CWI, Plata-Oviedo MSV, Guedes AR et al (2011) Chemical, antioxidant and antibacterial study of Brazilian fruits. Int J Food Sci Technol 46:1529–1537. https://doi.org/10.1111/j.1365-2621.2011.02653.x

    Article  CAS  Google Scholar 

  29. Kalt W, Lawand C (2003) Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J Am Soc Hortic Sci. 128:917–923

    Article  CAS  Google Scholar 

  30. Olivas-Aguirre FJ, González-Aguilar GA, Velderrain-Rodríguez GR et al (2017) Radical scavenging and anti-proliferative capacity of three freeze-dried tropical fruits. Int J Food Sci Technol 52:1699–1709. https://doi.org/10.1111/ijfs.13408

    Article  CAS  Google Scholar 

  31. Petrussa E, Braidot E, Zancani M et al (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973. https://doi.org/10.3390/ijms140714950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Voća S, Žlabur J, Dobričevic N et al (2014) Variation in the bioactive compound content at three ripening stages of strawberry fruit. Molecules 19:10370–10385. https://doi.org/10.3390/molecules190710370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. KC B, MDF B (2016) Fresh and spray dried pitanga (Eugenia uniflora) and Jambolan (Syzygium cumini) pulps are natural sources of bioactive compounds with functional attributes. J Probiotics Heal. https://doi.org/10.4172/2329-8901.1000145

    Article  Google Scholar 

  34. Neves LC, Silva VX da, Pontis JA et al (2015) Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Sci Hortic (Amst) 186:223–229. https://doi.org/10.1016/j.scienta.2015.02.031

    Article  CAS  Google Scholar 

  35. Castrejón ADR, Eichholz I, Rohn S et al (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:564–572. https://doi.org/10.1016/j.foodchem.2008.01.007

    Article  CAS  Google Scholar 

  36. Schutz M, Borges G da Gonzaga SC LV, et al (2015) Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Res Int 77:125–131

    Article  CAS  Google Scholar 

  37. Sogi DS, Siddiq M, Dolan KD (2015) Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT Food Sci Technol 62:564–568. https://doi.org/10.1016/j.lwt.2014.04.015

    Article  CAS  Google Scholar 

  38. Chen CR, Ramaswamy HS (2002) Color and texture change kinetics in ripening bananas. LWT Food Sci Technol 35:415–419. https://doi.org/10.1006/fstl.2001.0875

    Article  CAS  Google Scholar 

  39. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta Bioenerg 1807:977–988. https://doi.org/10.1016/j.bbabio.2010.12.007

    Article  CAS  Google Scholar 

  40. Ceriello A, Testa R, Genovese S (2016) Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 26:285–292. https://doi.org/10.1016/j.numecd.2016.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq, Fundação Araucária and the Paraná Centre for Scientific and Educational Research on Medicinal Plants for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

MBE collected data, interpreted the results and drafted the manuscript. ABP-N designed the study, interpreted the results and drafted the manuscript.

Corresponding author

Correspondence to Adaucto Bellarmino Pereira-Netto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies carried out with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egea, M.B., Pereira-Netto, A.B. Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: changes in antioxidant activity and related bioactive compounds during ripening. Eur Food Res Technol 245, 1081–1093 (2019). https://doi.org/10.1007/s00217-018-3208-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3208-z

Keywords

Navigation