Skip to main content
Log in

Differential flatfish species detection by COIBar-RFLP in processed seafood products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Common sole (Solea solea) is often the subject of fraudulent species substitutions in processed products because of their excellent organoleptic characteristics and high commercial interest. COIBar-RFLP, a molecular strategy-coupling Cytochrome Oxidase I (COI) DNA barcoding with the consolidated methodology of restriction fragment length polymorphism analysis (RFLP), was applied to search for restriction enzyme polymorphisms useful to discriminate among potential flatfish substitutes of common sole. Seven flatfish species belonging to Soleidae, Bothidae, and Citharidae families were used to construct a reference barcode library of COI sequences. The flatfish species were simultaneously discriminated through specific digestion profiles obtained with the restriction enzyme MspI. We tested the efficacy of COIBar-RFLP on 13 frozen fillets labeled as common sole purchased in local fish markets. These fillets were found to contain three species, S. solea, Solea senegalensis, and Arnoglossus laterna, successfully discriminated by COIBar-RFLP, demonstrating that this method is a rapid and simple sequencing-free molecular approach for these fish species identification in processed seafood products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen NJ, Deeds JR, Wong ES, Hanner RH, Yancy HF, White KD, Thompson TM, Wahl M, Pham TD, Guichard FM, Huh I, Austin C, Dizikes G, Gerber SI (2009) Public health response to puffer fish (Tetrodoxin) poisoning from mislabeled product. J Food Prot 72:810–817

    Article  CAS  Google Scholar 

  2. Garcia-Vazquez E, Perez J, Martinez JL, Pardiñas AF, Lopez B, Karaiskou N, Casa MF, Machado-Schiaffino G, Triantafyllidis A (2011) High level of mislabeling in Spanish and Greek hake markets suggests the fraudulent introduction of African species. J Agric Food Chem 59:475–480

    Article  CAS  Google Scholar 

  3. Changizi R, Farahmand H, Soltani M, Darvish F, Elmdoost A (2013) Species identification of some fish processing products in Iran by DNA barcoding. J Agric Sci Technol 15:973–980

    CAS  Google Scholar 

  4. Galal-Kallaf A, Ardura A, Mohammed-Jeba K, Borrel YJ, Garcia-Vazquez E (2014) DNA barcoding reveals a high level of mislabeling in egyptian fish fillets. Food Control 46:441–445

    Article  Google Scholar 

  5. Benard-Capelle J, Guillonneau V, Nouvian C, Fournier N, Le Loet K, Dettai A (2015) Fish mislabeling in France: substitution rates and retail types. PeerJ 2:e714

    Article  Google Scholar 

  6. Carvalho DC, Palhares RM, Drummond MG, Frigo TB (2015) DNA barcoding identification of commercialized seefood in South Brazil: a governmental regulatory forensic program. Food Control 50:784–788

    Article  CAS  Google Scholar 

  7. Cawthorn DM, Duncan J, Kastern C, Francis J, Hoffman LC (2015) Fish species substitution and misnaming in South Africa: an economic, safety and sustainability conundrum revisited. Food Chem 185:165–181

    Article  CAS  Google Scholar 

  8. Lamendin R, Miller K, Ward RD (2015) Labelling accuracy in Tasmanian seafood: an investigation using DNA barcoding. Food Control 47:436–443

    Article  CAS  Google Scholar 

  9. Vandamme SG, Griffiths AM, Taylor SA, Di Muri C, Hankard EA, Towne JA, Watson M, Mariani S (2016) Sushi barcoding in the UK: another kettle of fish. PeerJ 4:e1891

    Article  Google Scholar 

  10. Espiñeira M, Gonzalez-Lavin N, Vieites JM, Santaclara FJ (2008) Development of a method for the genetic identification of flatfish species on the basis of mitochondrial DNA sequences. J Agric Food Chem 56(19):8954–8961

    Article  Google Scholar 

  11. Pappalardo AM, Ferrito V (2015) DNA barcoding species identification unveils mislabeling of processed flatfish products in southern Italy markets. Fish Res 164:153–158

    Article  Google Scholar 

  12. Pardo MA, Jimenez E, Perez-Villarreal B (2016) Misdescription incidents in seafood sector. Food Control 62:277–283

    Article  Google Scholar 

  13. Ferrito V, Bertolino V, Pappalardo AM (2016) White fish authentication by COIBar-RFLP: toward a common strategy for the rapid identification of species in convenience seafood. Food Control 70:130–137

    Article  CAS  Google Scholar 

  14. Griffiths AM, Miller DD, Egan A, Fox J, Greenfield A, Mariani S (2013) DNA barcoding unveils skate (Chondrichthyes: Rajidae) species diversity in ‘ray’ products sold across Ireland and the UK. PeerJ 1:e129

    Article  Google Scholar 

  15. Pappalardo AM, Ferrito V (2015) A COIBar-RFLP strategy for the rapid detection of Engraulis encrasicolus in processed anchovy products. Food Control 57:385–392

    Article  CAS  Google Scholar 

  16. Pappalardo AM, Guarino F, Reina S, Messina A, De Pinto V (2011) Geographically widespread swordfish barcode stock identification: a case study of its application. PLoS One 6:e25516

    Article  CAS  Google Scholar 

  17. Stamatis C, Sarri CA, Moutou KA, Argyrakoulis N, Galara I, Godosopoulos V, Kolovos M, Liakou C, Stasinou V, Mamuris Z (2015) What do we think we eat? Single tracing method across foodstuff of animal origin found in Greek market. Food Res Int 69:151–155

    Article  CAS  Google Scholar 

  18. Hebert PDN, Ratnasingham S, deWaard J (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergence, among closely related species. Proc R Soc Lond B Biol Sci (Suppl) 270:S96–S99

    Article  CAS  Google Scholar 

  19. Bhattacharya M, Sharma AR, Patra BC, Sharma G, Seo EM, Nam JS, Chakraborty C, Lee SS (2016) DNA barcoding to fishes: current status and future directions. Mitochondrial DNA A DNA Mapp Seq Anal 27(4):2744–2752

    CAS  PubMed  Google Scholar 

  20. Dawnay N, Ogden R, McEwing R, Carvalho VR, Thorpe RS (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. For Sci Int 173:1–6

    CAS  Google Scholar 

  21. Pappalardo AM, Cuttitta A, Sardella A, Musco M, Maggio T, Patti B, Mazzola S, Ferrito V (2015) DNA barcoding and COI sequence variation in Mediterranean lanternfishes larvae. Hydrobiologia 745:155–167

    Article  Google Scholar 

  22. Pappalardo AM, Federico C, Sabella G, Saccone S, Ferrito V (2015) A COI nonsynonymous mutation as diagnostic tool for intraspecific discrimination in the European Anchovy Engraulis encrasicolus (Linnaeus). PloS one 10:e0143297

    Article  Google Scholar 

  23. Torres RA, Feitosa RB, Carvalho DC, Freitas MO, Hostim-Silva M, Ferreira BP (2013) DNA barcoding approaches for fishing authentication of exploited grouper species including the endangered and legally protected goliath grouper Epinephelus itajara. Sci Mar 77:409–418

    Article  CAS  Google Scholar 

  24. Haider N, Nabulsi I, Al-Safadi B (2012) Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Sci 90:490–493

    Article  CAS  Google Scholar 

  25. Caldelli A, Gigliarelli L, Bottinelli T, Palomba A, Chiesa S, Lucentini L (2014) PCR-RFLP approaches to easily identify Pleuronectes platessa from other flatfishes: a rapid and efficient tool to control label information. CyTA J Food 12:331–335

    Article  CAS  Google Scholar 

  26. Leonardo R, Nunes RSC, Monteiro MLG, Conte-Junior CA, Del Aguila EM, Paschoalin VMF (2016) Molecular testing on sardines and rulings on the authenticity and nutritional value of marketed fishes: an experience report in the state of Rio de Janeiro, Brazil. Food Control 60:394–400

    Article  CAS  Google Scholar 

  27. Rea S, Storani G, Mascaro N, Stocchi R, Loschi AR (2009) Species identification in anchovy pastes from the market by PCR-RFLP technique. Food Control 20:515–520

    Article  CAS  Google Scholar 

  28. Wolf C, Burgener M, Hubner P, Luthy J (2000) PCR-RFLP analysis of mitochondrial DNA: differentiation of fish species. LWT Food Sci Tech 33(2):144–150

    Article  CAS  Google Scholar 

  29. Aranishi F, Okimoto T, Izumi S (2005) Identification of gadoid species (Pisces, Gadidae) by PCR-RFLP analysis. J Appl Genet 46(1):69–73

    PubMed  Google Scholar 

  30. Akasaki T, Yanagimoto T, Yamakami K, Tomonaga H, Sato S (2006) Species identification and PCR-RFLP analisys of cytochrome b gene in cod fish (Order Gadiformes) products. J Food Sci 71:190–195

    Article  Google Scholar 

  31. Lin W, Hwang D (2007) Application of PCR-RFLP analysis on species identification of canned tuna. Food Control 18:1050–1057

    Article  CAS  Google Scholar 

  32. Hsieh C, Chang W, Chang HC, Hsieh H, Chung Y, Hwang D (2010) Puffer fish-based commercial fraud identification in a segment of cytochrome b region by PCR-RFLP analysis. Food Chem 121(4):1305–1311

    Article  CAS  Google Scholar 

  33. Besbes N, Fattouch S, Sadok S (2012) Differential detection of small pelagic fish in Tunisian canned products by PCR-RFLP: an efficient tool to control the label information. Food Control 25:260–264

    Article  Google Scholar 

  34. Chen S, Zhang Y, Li H, Wang J, Chen W, Zhou Yu, Zhou S (2014) Differentiation of fish species in Taiwan Strait by PCR-RFLP and lab-on-a-chip system. Food Control 44:26–34

    Article  Google Scholar 

  35. Mueller S, Handy SM, Deeds JR, George GO, Broadhead WJ, Pugh SE, Garret SD (2015) Development of a COX1 based PCR-RFLP method for fish species identification. Food Control 55:39–42

    Article  CAS  Google Scholar 

  36. Nantòn A, Freire R, Arias-Perez A, Gaspar MB, Mendez J (2015) Identification of four Donax species by PCR-RFLP analysis of cytochrome c oxidase subunit I (COI). Eur Food Res Technol 240(6):1129–1133

    Article  Google Scholar 

  37. Nielsen JG (1986) Bothidae, Pleuronectidae. In: Whitehead PJP, Bauchot ML, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the north-eastern atlantic and mediterranean, vol III. UNESCO, Paris, pp 1294–1307

    Google Scholar 

  38. Quéro JC, Desoutter M, Lagardère F (1986) Soleidae. In: Whitehead PJP, Bauchot ML, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and Mediterranean, vol III. UNESCO, Paris, pp 1308–1324

    Google Scholar 

  39. Landi M, Dimech M, Arculeo M, Biondo G, Martins R, Carneiro M, Carvalho GR, Brutto SL, Costa FO (2014) DNA barcoding for species assignment: the case of Mediterranean marine fishes. Plos One 9(9):E106135

    Article  Google Scholar 

  40. Shirak A, Dor L, Seroussi E, Ron M, Hulata G, Golani D (2016) DNA barcoding of fish species from the Mediterranean coast of Israel. Mediterr Mar Sci 17(2):459–466

    Article  Google Scholar 

  41. Knebelsberger T, Landi M, Neumann H, Kloppmann L, Sell AF, Campbell PD, Laakman S, Raupach MJ, Carvalho GR, Costa FO (2014) A reliable DNA barcode reference library for the identification of the North European shelf fish fauna. Mol Ecol Resour 14(5):1060–1071

    CAS  PubMed  Google Scholar 

  42. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  CAS  Google Scholar 

  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  45. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  46. Zhang DX, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–251

    Article  CAS  Google Scholar 

  47. Kappel K, Schröder U (2016) Substitution of high-priced fish with low-priced species: adulteration of common sole in German restaurants. Food Control 59:478–486

    Article  Google Scholar 

  48. Xiong X, D’Amico P, Guardone L, Castigliego L, Guidi A, Gianfaldoni D, Armani A (2016) The uncertainty of seafood labeling in China: a case study on code, salmon and tuna. Mar Pol 68:123–135

    Article  Google Scholar 

  49. Griffiths AM, Sotelo CG, Mendes R, Perez Martin RI, Schröder U, Shorten M, Silva HA, Verrez-Bagnis V, Mariani S (2014) Current methods for seafood authenticity testing in Europe: is there a need for harmonisation? Food Control 45:95–100

    Article  Google Scholar 

  50. Asing AME, Abd Hamid SB, Hossain MAM, Mustafa S, Kader MA, Zaidul ISM (2016) Lab-on-chip based PCR-RFLP assay for the detection of Malayan box turtle (Cuora amboinensis) in the food chain and traditional chinese medicines. PloS One 11(10):e0163436

    Article  CAS  Google Scholar 

  51. Valentini P, Galimberti A, Mezzasalma V, De Mattia F, Casiraghi M, Labra M, Pompa PP (2017) DNA barcoding meets nanotechnology: development of a smart universal tool for food authentication. Angew Chem Int Ed https://doi.org/10.1002/anie.201702120

    Article  Google Scholar 

  52. Druml B, Cichna-Markl M (2014) High resolution melting (HRM) analysis of DNA—its role and potential in food analysis. Food Chem 150:245–254

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Radek Sanda (National Museum, Prague, Czech Republic) for the kind gifts of A. laterna, A. imperialis, and Buglossidium luteum reference samples. This work was supported by Annual Research Plan 2016-18 of Department of Biological, Geological and Environmental Sciences, University of Catania (Grants # 22722132110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Pappalardo.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Compliance with ethics requirements

This research does not contain any studies with human participant. All institutional and national guideline for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, A.M., Federico, C., Saccone, S. et al. Differential flatfish species detection by COIBar-RFLP in processed seafood products. Eur Food Res Technol 244, 2191–2201 (2018). https://doi.org/10.1007/s00217-018-3129-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3129-x

Keywords

Navigation