Advertisement

European Food Research and Technology

, Volume 244, Issue 10, pp 1759–1772 | Cite as

Rating of the industrial application potential of yeast strains by molecular characterization

  • Alexander Lauterbach
  • Caroline Wilde
  • Dave Bertrand
  • Jürgen Behr
  • Rudi F. Vogel
Original Paper
  • 149 Downloads

Abstract

Each brewing yeast has its own unique impact on the formation of aroma compounds, and thus, on the properties of the final beer. The selection of the perfect strain for a specific brewing process results from physiological properties, which can be elucidated in brewing experiments. These properties result from genetic and proteomic features of each yeast strain. In the current study, 23 blind-coded yeasts were analyzed on a genomic level by microsatellite genotyping at 13 loci, on a sub-proteome level by MALDI-TOF MS, and on their phenotypic property by phenolic off flavor (POF) production assessment. These results were compared with the current application profile of each yeast strain. An expanded MALDI-TOF MS database was used to identify the blind-coded samples on species level, which was achieved to 100%. The samples belonged to top-fermenting Saccharomyces (S.) cerevisiae, bottom-fermenting S. pastorianus and S. cerevisiae var. diastaticus. Different groupings below species level were found with microsatellite analyses (classification on strain level) and MALDI sub-proteome (subdivision of yeasts into groups), which provided a prediction of application potential to beer styles for which they are currently used. The test for POF showed a wide variation and appears to be a strain-dependent property. However, this could serve as a starting point for the classification of yeast strains with respect to their usefulness for the production of specific beer styles or non-brewing applications.

Keywords

MALDI-TOF MS Microsatellite Phenolic off flavor Brewing yeast Saccharomyces 

Notes

Acknowledgements

Part of this work was supported by the German Ministry of Economics and Technology and the Wifö (Wissenschaftsförderung der Deutschen Brauwirtschaft e.V., Berlin, Germany) in project AiF 17698 N. We would like to thank our technical assistant Sabine Forster, and Dr Tobias Fischborn (Lallemand Inc.) for their support with the experiment, as well as Dr Damien Biot-Pelletier (Lallemand Inc.) and Viktor Eckel (Technische Mikrobiologie Weihenstephan) for critical reading of the manuscript. We are also grateful for the information about the origin of the new yeast strains for the MALDI-TOF MS library expansion from Dr. Mathias Hutzler and Tim Meier-Dörnberg.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethics requirements

This communication does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

217_2018_3088_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)

References

  1. 1.
    Barnett JA (1992) The taxonomy of the genus Saccharomyces meyen ex reess: A short review for non-taxonomists. Yeast 8(1):1–23.  https://doi.org/10.1002/yea.320080102 CrossRefGoogle Scholar
  2. 2.
    Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61(3):197–205.  https://doi.org/10.1007/s00253-002-1200-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Donalies UEB, Nguyen HTT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. In: Stahl U, Donalies UEB, Nevoigt E (eds) Food Biotechnology. Springer, Berlin, pp 67–98  https://doi.org/10.1007/10_2008_099 CrossRefGoogle Scholar
  4. 4.
    Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74(9):2787–2796CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16(2):115–129.  https://doi.org/10.1093/dnares/dsp003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hansen J, Bruun SV, Bech LM, Gjermansen C (2002) The level ofMXR1gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer. FEMS yeast research 2(2):137–149.  https://doi.org/10.1111/j.1567-1364.2002.tb00078.x CrossRefPubMedGoogle Scholar
  7. 7.
    Bokulich NA, Bamforth CW (2013) The microbiology of malting and brewing. Microbiol Mol Biol Rev 77(2):157–172.  https://doi.org/10.1128/MMBR.00060-12 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pires EJ, Teixeira JA, Branyik T, Vicente AA (2014) Yeast: the soul of beer’s aroma–a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98(5):1937–1949.  https://doi.org/10.1007/s00253-013-5470-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR (2004) Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. J Agric Food Chem 52(3):602–608.  https://doi.org/10.1021/jf0346556 CrossRefPubMedGoogle Scholar
  10. 10.
    Mukai N, Masaki K, Fujii T, Iefuji H (2014) Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J Biosci Bioeng 118(1):50–55.  https://doi.org/10.1016/j.jbiosc.2013.12.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Schneiderbanger H, Koob J, Poltinger S, Jacob F, Hutzler M (2016) Gene expression in wheat beer yeast strains and the synthesis of acetate esters. J Inst Brew 122(3):403–411CrossRefGoogle Scholar
  12. 12.
    Goncalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Goncalves P, Sampaio JP (2016) Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr Biol 26(20):2750–2761.  https://doi.org/10.1016/j.cub.2016.08.040 CrossRefPubMedGoogle Scholar
  13. 13.
    Focke K, Jentsch M (2013) Kleine Zelle—große Wirkung—Hefestämme, Hefelagerung und der Einfluss auf den Biercharakter. Brauindustrie 11:16–18Google Scholar
  14. 14.
    White C, Zainasheff J (2010) Yeast: the practical guide to beer fermentation. Brewers Publications, BoulderGoogle Scholar
  15. 15.
    Dornbusch HD (2010) The Ultimate almanac of world beer recipes: a practical guide for the professional brewer to the world’s classic beer styles from A to Z. Cerevisia Communications, Bamberg, Germany.Google Scholar
  16. 16.
    Meier-Dörnberg T, Michel M, Wager RS, Jacob F, Hutzler M (2017) Genetic and phenotypic characterization of different top-fermenting Saccharomyces cerevisiae Ale Yeast Isolates. Brew Sci 70:9–25Google Scholar
  17. 17.
    Gonzalez SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6(8):1221–1234.  https://doi.org/10.1111/j.1567-1364.2006.00126.x CrossRefPubMedGoogle Scholar
  18. 18.
    Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ (2016) Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166(6):1397–1410 e1316.  https://doi.org/10.1016/j.cell.2016.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gibson BR, Storgards E, Krogerus K, Vidgren V (2013) Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. Yeast 30(7):255–266.  https://doi.org/10.1002/yea.2960 CrossRefPubMedGoogle Scholar
  20. 20.
    Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102.  https://doi.org/10.1111/j.1365-294X.2007.03266.x CrossRefPubMedGoogle Scholar
  21. 21.
    Legras JL, Erny C, Charpentier C (2014) Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PloS one 9(10):e108089.  https://doi.org/10.1371/journal.pone.0108089 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Masneuf-Pomarede I, Salin F, Borlin M, Coton E, Coton M, Jeune CL, Legras JL (2016) Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Res 16(2):fow002.  https://doi.org/10.1093/femsyr/fow002 CrossRefPubMedGoogle Scholar
  23. 23.
    Couto MB, Eijsma B, Hofstra H, van der Vossen J (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Environ Microbio 62(1):41–46Google Scholar
  24. 24.
    Laidlaw L, Tompkins T, Savard L, Dowhanick T (1996) Identification and differentiation of brewing yeasts using specific and RAPD polymerase chain reaction. J Am Soc Brew Chem 54(2):97–102Google Scholar
  25. 25.
    Krogerus K, Magalhaes F, Vidgren V, Gibson B (2015) New lager yeast strains generated by interspecific hybridization. J Ind Microbiol Biotechnol 42(5):769–778.  https://doi.org/10.1007/s10295-015-1597-6 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sheehan CA, Weiss AS, Newsom IA, Flint V, O’Donnell DC (1991) Brewing yeast identification and chromosome analysis using high resolution CHEF gel electrophoresis. J Inst Brew 97(3):163–167CrossRefGoogle Scholar
  27. 27.
    Timmins EM, Quain DE, Goodacre R (1998) Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Yeast 14 (10):885–893. (10.1002/(SICI)1097-0061(199807)14:10<885::AID-YEA286>3.0.CO;2-G)CrossRefPubMedGoogle Scholar
  28. 28.
    Azumi M, Goto-Yamamoto N (2001) AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18(12):1145–1154.  https://doi.org/10.1002/yea.767 CrossRefPubMedGoogle Scholar
  29. 29.
    de Barros Lopes M, Rainieri S, Henschke PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 2(2):915–924.  https://doi.org/10.1099/00207713-49-2-915 CrossRefGoogle Scholar
  30. 30.
    Cappello MS, Bleve G, Grieco F, Dellaglio F, Zacheo G (2004) Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J Appl Microbiol 97(6):1274–1280.  https://doi.org/10.1111/j.1365-2672.2004.02412.x CrossRefPubMedGoogle Scholar
  31. 31.
    Gonzalez Flores M, Rodriguez ME, Oteiza JM, Barbagelata RJ, Lopes CA (2017) Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. Int J Food Microbiol 249:9–17.  https://doi.org/10.1016/j.ijfoodmicro.2017.02.018 CrossRefPubMedGoogle Scholar
  32. 32.
    McMurrough I, Madigan D, Donnelly D, Hurley J, Doyle AM, Hennigan G, McNulty N, Smyth MR (1996) Control of ferulic acid and 4-vinyl guaiacol in brewing. J Inst Brew 102(5):327–332CrossRefGoogle Scholar
  33. 33.
    Vanbeneden N, Gils F, Delvaux F, Delvaux FR (2008) Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem 107(1):221–230.  https://doi.org/10.1016/j.foodchem.2007.08.008 CrossRefGoogle Scholar
  34. 34.
    Mertens S, Steensels J, Gallone B, Souffriau B, Malcorps P, Verstrepen K (2017) Rapid screening method for phenolic off-flavor (POF) production in yeast.  https://doi.org/10.1094/ASBCJ-2017-4142-01
  35. 35.
    Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F, Boucherie H (2000) Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast 16 (6):511–522. (10.1002/(SICI)1097-0061(200004)16:6<511::AID-YEA544>3.0.CO;2-I)CrossRefPubMedGoogle Scholar
  36. 36.
    Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370(Pt 1):35–46.  https://doi.org/10.1042/BJ20020140 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kobi D, Zugmeyer S, Potier S, Jaquet-Gutfreund L (2004) Two-dimensional protein map of an “ale"-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 5(3):213–230.  https://doi.org/10.1016/j.femsyr.2004.07.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72(1):836–847.  https://doi.org/10.1128/AEM.72.1.836-847.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hansen R, Pearson SY, Brosnan JM, Meaden PG, Jamieson DJ (2006) Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Appl Microbiol Biotechnol 72(1):116–125.  https://doi.org/10.1007/s00253-006-0508-1 CrossRefPubMedGoogle Scholar
  40. 40.
    Kern CC, Vogel RF, Behr J (2014) Differentiation of lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol 40:18–24CrossRefPubMedGoogle Scholar
  41. 41.
    Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 185:41–50.  https://doi.org/10.1016/j.ijfoodmicro.2014.05.003 CrossRefPubMedGoogle Scholar
  42. 42.
    Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y (2014) Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 6(5):534–538.  https://doi.org/10.3978/j.issn.2072-1439.2014.02.18 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Demirev P, Sandrin TR (2016) Applications of Mass Spectrometry in Microbiology. Springer, HeidelbergCrossRefGoogle Scholar
  44. 44.
    Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36(2):380–407.  https://doi.org/10.1111/j.1574-6976.2011.00298.x CrossRefPubMedGoogle Scholar
  45. 45.
    Kern CC, Vogel RF, Behr J (2014) Identification and differentiation of brewery isolates of Pectinatus sp. by matrix-assisted-laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 238(5):875–880.  https://doi.org/10.1007/s00217-014-2173-4 CrossRefGoogle Scholar
  46. 46.
    Nacef M, Chevalier M, Chollet S, Drider D, Flahaut C (2017) MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int J Food Microbiol 247:2–8.  https://doi.org/10.1016/j.ijfoodmicro.2016.07.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Pavlovic M, Mewes A, Maggipinto M, Schmidt W, Messelhausser U, Balsliemke J, Hormansdorfer S, Busch U, Huber I (2014) MALDI-TOF MS based identification of food-borne yeast isolates. J Microbiol Methods 106:123–128.  https://doi.org/10.1016/j.mimet.2014.08.021 CrossRefPubMedGoogle Scholar
  48. 48.
    Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P (2013) Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 236(2):351–364.  https://doi.org/10.1007/s00217-012-1898-1 CrossRefGoogle Scholar
  49. 49.
    Blattel V, Petri A, Rabenstein A, Kuever J, Konig H (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97(10):4597–4606.  https://doi.org/10.1007/s00253-013-4823-z CrossRefPubMedGoogle Scholar
  50. 50.
    Gutierrez C, Gomez-Flechoso MA, Belda I, Ruiz J, Kayali N, Polo L, Santos A (2017) Wine yeasts identification by MALDI-TOF MS: Optimization of the preanalytical steps and development of an extensible open-source platform for processing and analysis of an in-house MS database. Int J Food Microbiol 254:1–10.  https://doi.org/10.1016/j.ijfoodmicro.2017.05.003 CrossRefPubMedGoogle Scholar
  51. 51.
    Usbeck JC, Wilde C, Bertrand D, Behr J, Vogel RF (2014) Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 98(8):3737–3752.  https://doi.org/10.1007/s00253-014-5586-x CrossRefPubMedGoogle Scholar
  52. 52.
    Lauterbach A, Usbeck JC, Behr J, Vogel RF (2017) MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PloS one 12(8):e0181694.  https://doi.org/10.1371/journal.pone.0181694 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Legras JL, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol 102(1):73–83.  https://doi.org/10.1016/j.ijfoodmicro.2004.12.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Perez M, Gallego F, Martinez I, Hidalgo P (2001) Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers. Lett Appl Microbiol 33(6):461–466CrossRefPubMedGoogle Scholar
  55. 55.
    Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550–570CrossRefPubMedGoogle Scholar
  56. 56.
    Yamauchi H, Yamamoto H, Shibano Y, Amaya N, Saeki T (1998) Rapid methods for detecting Saccharomyces diastaticus, a beer spoilage yeast, using the polymerase chain reaction. J Am Soc Brew Chem 56(2):58–63Google Scholar
  57. 57.
    Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1151–1156.  https://doi.org/10.1016/j.femsyr.2005.05.004 CrossRefPubMedGoogle Scholar
  58. 58.
    Michel M, Kopecká J, Meier-Dörnberg T, Zarnkow M, Jacob F, Hutzler M (2016) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144CrossRefPubMedGoogle Scholar
  59. 59.
    Usbeck JC, Kern CC, Vogel RF, Behr J (2013) Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by matrix-assisted-laser-desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in response to varying growth conditions. Food Microbiol 36(2):379–387.  https://doi.org/10.1016/j.fm.2013.07.004 CrossRefPubMedGoogle Scholar
  60. 60.
    Jombart T, Collins C (2015) A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0.0. Imperial College London, MRC Centre for Outbreak Analysis and Modelling, LondonGoogle Scholar
  61. 61.
    Jespersen L, Jakobsen M (1996) Specific spoilage organisms in breweries and laboratory media for their detection. Int J Food Microbiol 33(1):139–155.  https://doi.org/10.1016/0168-1605(96)01154-3 CrossRefPubMedGoogle Scholar
  62. 62.
    Heresztyn T (1986) Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146(1):96–98CrossRefGoogle Scholar
  63. 63.
    Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109(6):564–569.  https://doi.org/10.1016/j.jbiosc.2009.11.011 CrossRefPubMedGoogle Scholar
  64. 64.
    Chen P, Dong J, Yin H, Bao X, Chen L, He Y, Wan X, Chen R, Zhao Y, Hou X (2015) Single nucleotide polymorphisms and transcription analysis of genes involved in ferulic acid decarboxylation among different beer yeasts. J Inst Brew 121(4):481–489CrossRefGoogle Scholar
  65. 65.
    Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465.  https://doi.org/10.1046/j.1365-294X.2002.01643.x CrossRefPubMedGoogle Scholar
  66. 66.
    Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917.  https://doi.org/10.1128/JCM.00389-09 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Usbeck JC, Behr J (2012) Vogel RF Differentiation of top-and bottom-fermenting brewing yeasts and insight into their metabolic status by MALDI-TOF MS, In: Poster World Brewing Congress, PortlandGoogle Scholar
  68. 68.
    Schurr BC, Behr J, Vogel RF (2015) Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol 46:501–506.  https://doi.org/10.1016/j.fm.2014.09.018 CrossRefPubMedGoogle Scholar
  69. 69.
    Christner M, Trusch M, Rohde H, Kwiatkowski M, Schluter H, Wolters M, Aepfelbacher M, Hentschke M (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PloS one 9(7):e101924.  https://doi.org/10.1371/journal.pone.0101924 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pham T, Wimalasena T, Box W, Koivuranta K, Storgårds E, Smart K, Gibson B (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J Inst Brew 117(4):556–568CrossRefGoogle Scholar
  71. 71.
    Walther A, Hesselbart A, Wendland J (2014) Genome sequence of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. Genes Genomes Genet 4(5):783–793  https://doi.org/10.1534/g3.113.010090
  72. 72.
    Spencer JF, Spencer DM (1983) Genetic improvement of industrial yeasts. Annu Rev Microbiol 37(1):121–142.  https://doi.org/10.1146/annurev.mi.37.100183.001005 CrossRefPubMedGoogle Scholar
  73. 73.
    Meier-Dörnberg T, Jacob F, Michel M, Hutzler M (2017) Incidence of Saccharomyces cerevisiae var. diastaticus in the beverage industry: cases of contamination, 2008–2017. Master Brew Assoc Am 54(4):140–148.  https://doi.org/10.1094/TQ-54-4-1130-01 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Lauterbach
    • 1
  • Caroline Wilde
    • 3
  • Dave Bertrand
    • 3
  • Jürgen Behr
    • 1
    • 2
  • Rudi F. Vogel
    • 1
  1. 1.Lehrstuhl für Technische MikrobiologieTechnische Universität MünchenFreisingGermany
  2. 2.Bavarian Center for Biomolecular Mass SpectrometryFreisingGermany
  3. 3.Lallemand Inc.QuébecCanada

Personalised recommendations