Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers

  • Angelo Antonio D’Archivio
  • Luciana Di Pietro
  • Maria Anna Maggi
  • Leucio Rossi
Original Paper

Abstract

Gas cromatography with mass spectrometry detection coupled to headspace solid-phase microextraction (SPME) was used to analyse the aroma profile of saffron (Crocus sativus L.). The influence of the saffron amount and form (intact stigmas vs. powder) on the intensity of the chromatograms was preliminarily evaluated. Moreover, the mutual effects of the sample temperature and exposition time of a polydimethylsiloxane SPME fiber was investigated by response surface methodology. Saffron samples produced in L’Aquila (Italy), Iran and Morocco, and commercial spices were analysed under application of the optimised SPME conditions and geographical classification was attempted by linear discriminant analysis applied to the relative peak areas of all the detected volatiles. The spices produced in the different geographical areas and the commercial products were discriminated with good accuracy, 91% of external samples being correctly classified using leave-one-out cross-validation. An acceptable differentiation (73% of correct predictions) was obtained by considering only the major aroma components.

Keywords

Saffron aroma HS-SPME/GC–MS Response surface methodology Geographical traceability 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

The authors declare that this article does not contain any studies with human or animal subjects.

Supplementary material

217_2018_3073_MOESM1_ESM.pdf (267 kb)
Supplementary material 1 (PDF 267 KB)

References

  1. 1.
    Licón C, Carmona M, Lorens S, Berruga MI, Alonso GL (2010) Potential healthy effects of saffron spice (Crocus sativus L. stigmas) consumption. Funct Plant Sci Technol 4(Special Issue 2):64–73Google Scholar
  2. 2.
    Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res Int 43:1981–1989CrossRefGoogle Scholar
  3. 3.
    Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979CrossRefGoogle Scholar
  4. 4.
    Winterhalter P, Straubinger M (2000) Saffron-renewed interest in an ancient spice. Food Rev Int 16:39–59CrossRefGoogle Scholar
  5. 5.
    Maggi L, Carmona M, Zalacain A, Kanakis CD, Anastasaki E, Tarantilis PA, Polissiou MG, Alonso GL (2010) Changes in the saffron volatile profile according to its storage time. Food Res Int 43:1329–1334CrossRefGoogle Scholar
  6. 6.
    Tarantilis PA, Polissiou MG (1997) Isolation and identification of the aroma components from saffron (Crocus sativus). J Agr Food Chem 45:459–462CrossRefGoogle Scholar
  7. 7.
    Carmona M, Zalacain A, Salinas MR, Alonso GL (2007) A new approach to saffron aroma. Crit Rev Food Sci 47:145–159CrossRefGoogle Scholar
  8. 8.
    Carmona M, Martínez J, Zalacain A, Rodríguez-Méndez ML, de Saja JA, Alonso GL (2006) Analysis of saffron volatile fraction by TD-GC-MS and e-nose. Eur Food Res Technol 223:96–101CrossRefGoogle Scholar
  9. 9.
    Aliakbarzadeh G, Parastar H, Sereshti H (2016) Classification of gas chromatographic fingerprints of saffron using partial least squares discriminant analysis together with different variable selection methods. Chemom Intel Lab Syst 158:165–173CrossRefGoogle Scholar
  10. 10.
    Aliakbarzadeh G, Sereshti H, Parastar H (2016) Pattern recognition analysis of chromatographic fingerprints of Crocus sativus L. secondary metabolites towards source identification and quality control. Anal Bioanal Chem 408:3295–3307CrossRefGoogle Scholar
  11. 11.
    Anastasaki E, Kanakis C, Pappas C, Maggi L, del Campo CP, Carmona M, Alonso GL, Polissiou MG (2009) Geographical differentiation of saffron by GC–MS/FID and chemometrics. Eur Food Res Technol 229:899–905CrossRefGoogle Scholar
  12. 12.
    Jalavi-Heravi M, Parastar H, Ebrahimi-Najafabadi H (2010) Self-modeling curve resolution techniques applied to comparative analysis of volatile components of Iranian saffron from different regions. Anal Chim Acta 662:143–154CrossRefGoogle Scholar
  13. 13.
    Culleré L, San-Juan F, Cacho J (2011) Characterisation of aroma active compounds of Spanish saffron by gas chromatography-olfactometry: quantitative evaluation of the most relevant aromatic compounds. Food Chem 127:1866–1871CrossRefGoogle Scholar
  14. 14.
    Kanakis CD, Daferera DJ, Tarantilis PA, Polissiou MG (2004) Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J Agric Food Chem 52:4515–4521CrossRefGoogle Scholar
  15. 15.
    Jalavi-Heravi MM, Parastar H, Ebrahimi-Najafabadi H (2009) Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography-mass spectrometry analysis. J Chromatogr A 1216:6088–6097CrossRefGoogle Scholar
  16. 16.
    Sereshti H, Heidari R, Samadi S (2014) Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Food Chem 143:499–505CrossRefGoogle Scholar
  17. 17.
    Jeleń HH, Majcher M, Dziadas M (2012) Microextraction techniques in the analysis of food flavour compounds: a review. Anal Chim Acta 738:13–26CrossRefGoogle Scholar
  18. 18.
    Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62CrossRefGoogle Scholar
  19. 19.
    D’Auria M, Mauriello G, Racioppi R, Rana GL (2006) Use of SPME–GC–MS in the study of time evolution of the constituents of saffron aroma; modifications of the composition during storage. J Chromatogr Sci 44:18–21CrossRefGoogle Scholar
  20. 20.
    D’Auria M, Mauriello G, Rana GL (2004) Volatile organic compounds from saffron. Flavour Frag J 19:17–23CrossRefGoogle Scholar
  21. 21.
    Du H, Wang J, Hu Z, Yao X (2008) Quantitative structure–retention relationship study of the constituents of saffron aroma in SPME–GC-MS based on the projection pursuit regression method. Talanta 77:360–365CrossRefGoogle Scholar
  22. 22.
    Tahri K, Tiebe C, Bougrini M, Saidi T, El Alami El Hassani N, El Bari N, Hübert T, Bouchikhi B (2015) Characterization and discrimination of saffron by multisensory systems, SPME–GC–MS and UV–vis spectrophotometry. Anal Methods 7:10328–10338CrossRefGoogle Scholar
  23. 23.
    Urbani E, Blasi F, Chiesi C, Maurizi A, Cossignani L (2015) Characterization of volatile fraction of saffron from central Italy (Cascia, Umbria). Int J Food Prop 18:2223–2230CrossRefGoogle Scholar
  24. 24.
    Karabagias IK, Koutsoumpou M, Liakou V, Kontakos S, Kontominas MG (2017) Characterizaion and geographical discrimination of saffron from Greece, Spain, Iran, and Morocco based on volatile and bioactivity markers, using chemometrics. Eur Food Res Technol 243:1577–1591CrossRefGoogle Scholar
  25. 25.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefGoogle Scholar
  26. 26.
    Candioti LV, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–138CrossRefGoogle Scholar
  27. 27.
    Rencher AC (2002) Methods of multivariate analysis, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  28. 28.
    McLachlan G (1992) Discriminant analysis and statistical pattern recognition. Wiley, New YorkCrossRefGoogle Scholar
  29. 29.
    Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliveri P (2010) V-PARVUS 2010. Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari, University of Genova. http://www.parvus.unige.it. Accessed 5 June 2017
  30. 30.
    European Commission (2016) Geographical indications and traditional specialities. http://ec.europa.eu/agriculture/quality/schemes/index_en.htm. Accessed 20 Dec 2016
  31. 31.
    Anastasaki E, Kanakis C, Pappas C, Maggi L, del Campo CP, Carmona M, Alonso GL, Polissiou MG (2010) Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis. Eur Food Res Technol 230:571–577CrossRefGoogle Scholar
  32. 32.
    D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2016) Geographical classification of Italian saffron (Crocus sativus L.) based on high-performance liquid-chromatography and linear discriminant analysis. Food Chem 212:110–116CrossRefGoogle Scholar
  33. 33.
    D’Archivio AA, Maggi MA (2017) Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV–visible spectra of aqueous extracts. Food Chem 219:408–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Angelo Antonio D’Archivio
    • 1
  • Luciana Di Pietro
    • 1
  • Maria Anna Maggi
    • 2
  • Leucio Rossi
    • 1
  1. 1.Dipartimento di Scienze Fisiche e ChimicheUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Hortus NovusL’AquilaItaly

Personalised recommendations