Advertisement

European Food Research and Technology

, Volume 244, Issue 9, pp 1521–1531 | Cite as

Lupinus angustifolius L. lactofermentation and protein isolation: effects on phenolic compounds and genistein, antioxidant properties, trypsin inhibitor activity, and protein digestibility

  • Elena Bartkiene
  • Vytaute Sakiene
  • Vadims Bartkevics
  • Janis Rusko
  • Vita Lele
  • Grazina Juodeikiene
  • Claudia Wiacek
  • Peggy G. Braun
Original Paper
  • 126 Downloads

Abstract

In some European countries, lupin seeds are not used efficiently enough, due to a lack of processing technologies for the preparation of attractive higher-value products; fermentation could be a promising process to increase the value of lupin seeds and their protein isolates. In this study, the influence of a range of factors—seeds of Lupinus angustifolius L. hybrid line (HL) Nos. 1700, 1701, 1800, and 1072, solid state and submerged fermentation methods (FMs) with different Pediococcus pentosaceus strains (05–8, 05–9, and 05–10), and the use of a protein isolation (PI) process—on the total content of phenolic compounds (TPC) and isoflavones, antioxidant properties, trypsin inhibitor activity (TIA), and protein digestibility (PD) of lupin wholemeal and protein isolates was evaluated. In addition, changes in the SDS-PAGE profiles of fermented lupin protein isolates were analysed. The selected Pediococcus strains were found to be suitable starters for the fermentation of lupin seeds. The protein content in isolates ranged from 80.43 to 89.08% on a dry weight basis and was significantly influenced by FM (p = 0.0001). The most common protein fractions in isolates ranged in molecular weight from 15 to 167 kDa. The PD of lupin wholemeal samples was on average 3.13% higher than that of protein isolates. The genistein content of lupin samples showed a significant correlation with PI and HL (p = 0.002 and p = 0.0001, respectively), and a lower genistein content was observed in lupin protein isolates. Fermentation can provide a basis for the development of higher-value products, but the technological parameters should be selected by taking into account that some technological steps (PI) can reduce the amount of genistein.

Keywords

Antioxidant properties Isoflavones Lupin Protein digestibility Trypsin inhibitors 

Notes

Acknowledgements

Part of this research was funded by the Baltic-German University Liaison Office project, which is supported by the German Academic Exchange Service (DAAD) with funds from the Foreign Office of the Federal Republic of Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Gresta F, De Luca AI, Strano A, Falcone G, Santonoceto C, Anastasi U, Gulisano G (2014) Ital J Agron 9:20–24CrossRefGoogle Scholar
  2. 2.
    Belski R, Jeyakumar H (2012) Adv Food Nutr Res 66:147CrossRefPubMedGoogle Scholar
  3. 3.
    Lucas MM, Stoddard FL, Annicchiarico P, Frias J, Martinez-Villaluenga C, Sussmann D, Pueyo JJ (2015) Front Plant Sci 6:705PubMedPubMedCentralGoogle Scholar
  4. 4.
    Czubinski J, Montowska M, Pospiech E, Lampart-Szczapa E (2017) J Sci Food Agric 97:1–8CrossRefGoogle Scholar
  5. 5.
    Melini F, Melini V, Luziatelli F, Ruzzi M (2017) Compr Rev Food Sci Food Saf 16:1101–1122CrossRefGoogle Scholar
  6. 6.
    Bähr M, Fechner A, Kiehntopf M, Jahreis G (2015) Clin Nutr 34:7–14CrossRefPubMedGoogle Scholar
  7. 7.
    Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) Crit Rev Plant Sci 34:144–168CrossRefGoogle Scholar
  8. 8.
    Rietjens IMCM., Louisse J, Beekmann (2017) Br J Pharmacol 174:1263–1280CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta A, Tiwari SK (2014) Probiotics Antimicrob Proteins 6:73–81CrossRefPubMedGoogle Scholar
  10. 10.
    Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Food Chem 160:346–356CrossRefPubMedGoogle Scholar
  11. 11.
    Dordevic TM, Šiler-Marinkovic SS, Dimitrijevic-Brankovic SI (2010) Food Chem 119:957–963CrossRefGoogle Scholar
  12. 12.
    Nagino T, Mitsuyoshi KA, Masuoka N, Chiaki KA, Michitoshi AN, Miyazaki K, Kamachi K, Isozak M, Suzuki C, Kasuga C, Tanaka A (2016) Biosci Microb Food Health 35:9–17CrossRefGoogle Scholar
  13. 13.
    Jackson CJ, Dini JP, Lavandier C, Rupasinghe HP, Faulkner H, Poysa V, Buzzell D, DeGrandis S (2002) Process Biochem 37:1117–1123CrossRefGoogle Scholar
  14. 14.
    Bartkiene E, Bartkevics V, Starkute V, Krungleviciute V, Cizeikiene D, Zadeike D, Juodeikiene G (2016) Zemdirb Agric 103:107–114CrossRefGoogle Scholar
  15. 15.
    Bartkiene E, Bartkevics V, Rusko J, Starkute V, Zadeike D, Juodeikiene G (2016) Int J Food Sci Technol 51:2049–2056CrossRefGoogle Scholar
  16. 16.
    ISO 15214:1998 (1998) Horizontal method for the enumeration of mesophilic lactic acid bacteria. Colony-count technique at 30 °C. International standards. Microbiology of food and animal feeding stuffs. International Organization for Standardization, GinebraGoogle Scholar
  17. 17.
    Muranyi IS, Volke D, Hoffmann R, Eisner P, Herfellner T, Brunnbauer M, Schweiggert-Weisz U (2016) Food Chem 207:6–15CrossRefPubMedGoogle Scholar
  18. 18.
    King J, Aguirre C, De Pablo S (1985) J Food Sci 50:82–87CrossRefGoogle Scholar
  19. 19.
    AOAC International (1990) Method 968.06. Official methods of analysis of the Association of Official Analytical Chemists. Gaithersburg, MD, USAGoogle Scholar
  20. 20.
    ICC 105/2:1994 (1995) Determination of crude protein in cereals and cereal products for food and for feed. Ed. International Association for Cereal Science and Technology, ViennaGoogle Scholar
  21. 21.
    Lqari H, Vioque J, Pedroche J, Millán F (2002) Food Chem 76:349–356CrossRefGoogle Scholar
  22. 22.
    Vaher M, Matso K, Levandi T, Helmja K, Kaljurand M (2010) Procedia Chem 2:76–82CrossRefGoogle Scholar
  23. 23.
    Zhu KX, Lian CX, Guo XN, Peng W, Zhou HM (2011) Food Chem 126:1122–1126CrossRefGoogle Scholar
  24. 24.
    Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Trends Food Sci Technol 16:57–69CrossRefGoogle Scholar
  25. 25.
    Fritsch C, Vogel RF, Toelstede S (2015) J Appl Microbiol 119:1075–1088CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar BV, Vijayendra SVN, Reddy OVS (2015) J Food Sci Technol 52:6112–6124CrossRefGoogle Scholar
  27. 27.
    Jiang J, Chen J, Xiong YL (2009) J Agric Food Chem 57:7576–7583CrossRefPubMedGoogle Scholar
  28. 28.
    Schoustra SE, Kasase C, Toarta C, Kassen R, Poulain AJ (2013) PLoS One 8:639–648CrossRefGoogle Scholar
  29. 29.
    Tyl C, Sadler GD (2017) pH and Titratable Acidity. In: Nielsen S (ed) Food Analysis. Springer, Cham, pp 389–406Google Scholar
  30. 30.
    Feyzi S, Varidi M, Zare F, Varidi MJ (2015) J Sci Food Agric 95:3165–3176CrossRefPubMedGoogle Scholar
  31. 31.
    Ballabio C, Peñas E, Uberti F, Fiocchi A, Duranti M, Magni C, Restani P (2013) Pediatr Allergy Immunol 24:270–275CrossRefPubMedGoogle Scholar
  32. 32.
    Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Antioxid Redox Signal 18:1818–1892CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Othman NB, Roblain D, Chammen N, Thonart P, Hamdi M (2009) Food Chem 116:662–669CrossRefGoogle Scholar
  34. 34.
    Gan RY, Shah NP, Wang MF, Lui WY, Corke H (2016) Int J Food Sci Technol 51:875–884CrossRefGoogle Scholar
  35. 35.
    Gujral HS, Sharma P, Bajaj R, Solah V (2012) J Food Sci Technol 18:47–54CrossRefGoogle Scholar
  36. 36.
    Sindhu SC, Khetarpaul N (2001) J Food Compos Anal 14:601–609CrossRefGoogle Scholar
  37. 37.
    Gilani GS, Xiao CW, Cockell KA (2012) Br J Nutr 108:315–332CrossRefGoogle Scholar
  38. 38.
    Wati RK, Theppakorn T, Benjakul S, Rawdkuen S (2010) J Food Sci 75:C223–C228CrossRefPubMedGoogle Scholar
  39. 39.
    Wink M (2013) South Afr J Bot 89:164–175CrossRefGoogle Scholar
  40. 40.
    Grela ER, Kiczorowska B, Samolińska W, Matras J, Kiczorowski P, Rybiński W, Hanczakowska E (2017) Eur Food Res Technol 243:1385–1395CrossRefGoogle Scholar
  41. 41.
    Kobayashi H (2013) Front Biosci (Elite Ed) 5:966–973CrossRefGoogle Scholar
  42. 42.
    Dallas D, Sanctuary MR, Qu Y, Khajavi SH, Van Zandt AE, Dyandra M, Frese SA, Barile D, German JB (2017) Crit Rev Food Sci Nutr 57:3313–3331CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Feng J, Liu X, Xu Z, Lu Y, Liu Y (2007) Anim Feed Sci Technol 134:295–303CrossRefGoogle Scholar
  44. 44.
    Zhang ZL, Zhou ML, Tang Y, Li FL, Tang YX, Shao JR, Wu YM (2012) Food Res Int 49:389–395CrossRefGoogle Scholar
  45. 45.
    Oomah BD, Tiger N, Olson M, Balasubramanian P (2006) Plant Foods Hum Nutr 61:91–97CrossRefPubMedGoogle Scholar
  46. 46.
    Kim SH, Choi KC (2014) J Nutr Biochem 28:70–82CrossRefGoogle Scholar
  47. 47.
    Antosiak A, Milowska K, Maczynska K, Rozalska S, Gabryelak T (2017) Med Chem Res 26:64–73CrossRefPubMedGoogle Scholar
  48. 48.
    Danciu C, Oana S, Antal DS, Ardelean F, Chis AR, Soica C, Andrica F, Dehelean C, Brigitha V (2017) New Insights Regarding the Potential Health Benefits of Isoflavones. In: Badria FA (ed) Natural products and cancer drug discovery. InTech. ISBN 978-953-51-3314-8, Print ISBN 978-953-51-3313-1Google Scholar
  49. 49.
    Liu ZM, Ho SC, Chen YM, Ho S, To K, Tomlinson B, Woo J (2014) Mol Nutr Food Res 58:709–717CrossRefPubMedGoogle Scholar
  50. 50.
    Pakalapati G, Li L, Gretz N, Koch E, Wink M (2009) Phytomedicine 16:845–855CrossRefPubMedGoogle Scholar
  51. 51.
    Wang HJ, Murphy PA (1996) J Agric Food Chem 44:2377–2383CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elena Bartkiene
    • 1
  • Vytaute Sakiene
    • 1
  • Vadims Bartkevics
    • 2
    • 3
  • Janis Rusko
    • 3
  • Vita Lele
    • 1
  • Grazina Juodeikiene
    • 4
  • Claudia Wiacek
    • 5
  • Peggy G. Braun
    • 5
  1. 1.Lithuanian University of Health SciencesKaunasLithuania
  2. 2.University of LatviaRigaLatvia
  3. 3.Institute of Food Safety, Animal Health and Environment “BIOR”RigaLatvia
  4. 4.Kaunas University of TechnologyKaunasLithuania
  5. 5.Institute of Food HygieneUniversität LeipzigLeipzigGermany

Personalised recommendations