European Food Research and Technology

, Volume 244, Issue 6, pp 1083–1090 | Cite as

Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine

  • J. Oliva
  • G. Martínez
  • S. Cermeño
  • M. Motas
  • A. Barba
  • M. A. Cámara
Original Paper


The influence of the matrix and the concentration of the pesticides on the bioavailability of the dimethomorph, ametoctradin, boscalid, fenhexamid, mepanipyrim, cyazofamid, kresoxim-methyl, pyraclostrobin, and metrofenone fungicides in grapes and red wine are studied. Bioavailability is calculated using an in vitro procedure and by simulating human gastric digestion by dialyzation of the fungicides at six concentrations (0.1, 0.5, 1, 2, 5, and 10 mg kg−1) in the semipermeable cellulose membrane. Analyses were carried out by QuEChERS extraction method and liquid chromatography with mass spectrometry with a triple quadrupole analyzer detection (LC-MS/MS QqQ). The results indicated a clear effect of the concentration and matrix, with dialyzation in grapes and red wine beginning in some fungicides from just 2 mg kg1, and in water from 5 mg kg−1. The different matrices can also be ordered according to the matrix effect: water > red wine > grape. The fungicides which present greatest bioavailability are, in order: ametoctradin in grape and red wine, boscalid in red wine and water, dimethomorph in water, and fenhexamid in red wine and water.


Fungicides bioavailability Grape Red wine 



The authors acknowledge funding from the Spanish Ministry for Economy and Competitiveness under Project AGL2011-30378-C03-03.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects.


  1. 1.
    Belanger MC, Roger JM, Cartolaro P, Viau AA, Bellon-Maurel V (2008) Detection of powdery mildew in grapevine using remotely sensed UV-induced fluorescence. Int J Remote Sens 29:1707–1724CrossRefGoogle Scholar
  2. 2.
    González-Álvarez M, Gonzalez-Barreiro C, Cancho-Grande B, Simal-Gandara J (2012) Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines. Food Chem 131:826–836CrossRefGoogle Scholar
  3. 3.
    Briz-Cid N, Figueiredo-Gonzalez M, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2014) Effect of two anti-fungal treatments (metrafenone and boscalid plus kresoxim-methyl) applied to vines on the color and phenol profile of different red wines. Molecules 19:8093–8111CrossRefGoogle Scholar
  4. 4.
    Noguerol-Pato R, Sieiro-Sampedro T, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2015) Evaluation of the effect of fenhexamid and mepanipyrim in the volatile composition of Tempranillo and Graciano wines. Food Res Int 71:108–117CrossRefGoogle Scholar
  5. 5.
    Noguerol-Pato R, Fernández-Cruz T, Sieiro-Sampedro T, González-Barreiro C, Cancho-Grande B, Cilla-García D, García-Pastor M, Martínez-Soria MT, Sanz-Asensio J, Simal-Gándara J (2016) Dissipation of fungicide residues during winemaking and their effects on fermentation and the volatile composition of wines. J Agric Food Chem 64:1344–1354CrossRefGoogle Scholar
  6. 6.
    Oliva J, Martínez-Gil AM, Lorenzo C, Cámara MA, Salinas MR, Barba A, Garde-Cerdán T (2015) Influence of the use of fungicides on the volatile composition of Monastrell red wines obtained from inoculated fermentation. Food Chem 170:401–406CrossRefGoogle Scholar
  7. 7.
    Mulero J, Martínez G, Oliva J, Cermeño S, Cayuela JM, Zafrilla P, Martínez-Cachá A, Barba A (2015) Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem 180:25–31CrossRefGoogle Scholar
  8. 8.
    Fernández MJ, Oliva J, Barba A, Cámara MA (2005) Fungicide dissipation curves in winemaking process with and without maceration step. J Agric Food Chem 53:804–811CrossRefGoogle Scholar
  9. 9.
    Codex Alimentarius. Commission for Pesticide Residues (2013) List of maximum residue limits for pesticides in food and animal feeds, Part-1. Joint FAO/WHO food standard programGoogle Scholar
  10. 10.
    Read A, Wright A, Abdel-Aal EM (2015) In vitro bioaccessibility and monolayer uptake of lutein from wholegrain baked foods. Food Chem 174:263–269CrossRefGoogle Scholar
  11. 11.
    Intawongse M, Dean JR (2006) In vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends Anal Chem 25:876–886CrossRefGoogle Scholar
  12. 12.
    Kamiloglu S, Capanoglu E, Bilen FD, Gonzales G, Grootaert C, Van de Wiele T, Van Camp J (2016) Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J Agric Food Chem 64:2450–2458CrossRefGoogle Scholar
  13. 13.
    Payá P, Oliva J, Zafrilla P, Cámara MA, Barba A (2009) Bioavailability of insect growth regulator residues in citrus. Ecotoxicol 18:1137–1142CrossRefGoogle Scholar
  14. 14.
    Menchai P, Van Zwieten L, Kimber S, Ahmad N, Rao PSC, Hose G (2008) Bioavailable DDT residues in sediments: laboratory assessment of ageing effects using semi-permeable membrane devices. Environ Poll 153:110–118CrossRefGoogle Scholar
  15. 15.
    You J, Brennan A, Lydy MJ (2009) Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere 75:1477–1478CrossRefGoogle Scholar
  16. 16.
    Tao S, Li L, Ding J, Zhong J, Zhang D, Lu Y, Yang Y, Wang X, Li X, Cao J, Lu X, Liu W (2011) Mobilization of soil-bound residue of organochlorine, pesticides and polycyclic aromatic hydrocarbons in an in vitro gastrointestinal model. Environ Sci Technol 45:1127–1132CrossRefGoogle Scholar
  17. 17.
    Shaw-Wei S, Chun-Chih T, Hung-Yu L, Zueng-Sang C (2014) Food safety and bioavailability evaluations of four vegetables grown in the highly arsenic-contaminated soils on the Guandu plain of Northern Taiwan. Int Res Public Health 11:4091–4107CrossRefGoogle Scholar
  18. 18.
    Rukhsanda A, Rafiq MT, Li T, Liu D, He Z, Stoffella PJ, Sun K, Xiaoe Y (2015) Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J Agric Food Chem 63:3599–3608CrossRefGoogle Scholar
  19. 19.
    Moreda-Pineiro J, Moreda-Pineiro A, Romaris-Hortas V, Domínguez-González R, Alonso-Roríguez E, López-Mahia P, Muniategui-Lorenzo S, Prada-Rodríguez D, Bermejo-Barrera P (2012) Trace metals in marine foodstuff: bioavailability estimation and effect of major food constituents. Food Chem 134:339–345CrossRefGoogle Scholar
  20. 20.
    Payá P, Mulero J, Oliva J, Cámara MA, Barba A (2013) Influence of the matrix in bioavailability of flufenoxuron, lufenuron, pyriproxyfen and fenoxycarb residues in grapes and wine. Food Chem Toxicol 60:419–423CrossRefGoogle Scholar
  21. 21.
    Martínez G, Morales A, Maestro A, Cermeño S, Oliva J, Barba A (2015) A Nine fungicides in grape and wine using QuEChERS extraction and LC/MS/MS analysis. J AOAC Int 98:1745–1751CrossRefGoogle Scholar
  22. 22.
    EU. European Commission (2015) Document SANTE/11945/2015. Analytical quality control and method validation procedures for pesticides analysis in foos and feed.
  23. 23.
  24. 24.
    Cermeño S, Martinez G, Oliva J, Camara MA, Barba A (2016) Influence of the presence of ethanol on in vitro bioavailability of fungicide residues. Food Chem Toxicol 93:1–4CrossRefGoogle Scholar
  25. 25.
    Taraschi TF, Rubin E (1985) Effects of ethanol on the chemical and structural properties of biologic membranes. Lab Inv 52:120–131Google Scholar
  26. 26.
    Monteiro R, Clhau C, Martel F, Guedes de Pinho P, Azevedo I (2004) Intestinal uptake of MPP+ is differently affected by red and white wines. LifeScience 76:2483–2496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Oliva
    • 1
  • G. Martínez
    • 1
  • S. Cermeño
    • 1
  • M. Motas
    • 2
  • A. Barba
    • 1
  • M. A. Cámara
    • 1
  1. 1.Department of Agricultural Chemistry, Geology and Pedology, Faculty of ChemistryUniversity of MurciaMurciaSpain
  2. 2.Department of Toxicology, Faculty of VeterinaryUniversity of MurciaMurciaSpain

Personalised recommendations