Skip to main content
Log in

Seedless table grape residues as a source of polyphenols: comparison and optimization of non-conventional extraction techniques

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Grape skins are one of the most important leftovers of grape juice production, and are also a good source of bioactive compounds, especially phenolic antioxidants and fiber, because they are not stressed as the winemaking process occurs. Their extracts may be used as functional components of enriched foods and beverage, both to color the products and to supplement with bio-functional metabolites. Therefore, in this work, ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were optimized and compared using response surface methodology (RSM) and desirability function (D) statistical tools, at selected temperature and solvent type (close to 50 °C and water/ethanol/phosphoric acid 70:30:1) but varying contact time (t) and sample-to-solvent ratio (S/L), to find the best conditions for the extraction of the main polyphenols present in table grape skin (Apulia Rose cv.) residues from juice processing. The mathematical models built in this investigation showed that the highest significant factor (P < 0.001) was t, influencing the extraction of all compounds irrespective of the technique used, with the optimal results obtained at intermediate levels (10.5 and 21 min for MAE and UAE, respectively). On the contrary, the only S/L factor was not always significant, even though higher amount of polyphenols were generally recovered at low solid/liquid ratio (0.05 and 0.07 g/mL for MAE and UAE, respectively). Finally, UAE extracts exhibited higher content of anthocyanins, procyanidins, flavonols, and stilbenes than MAE, with values ranging from 1.5 to 69.6 mg/100 g of fresh weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HPLC–DAD–MS/MS:

High performance liquid chromatography–diode array detector–tandem mass spectrometry

ESI:

Electrospray ionization

EIC:

Extracted ions chromatogram

CID:

Collision induced dissociation

UV–Vis:

Ultraviolet–visible

[M-H] :

Deprotonated molecule

[M]+ :

Molecular ion

t :

Extraction time

S/L :

Sample-to-solvent ratio

MAE:

Microwave assisted extraction

UAE:

Ultrasound assisted extraction

RSM:

Response surface methodology

D :

Desirability function

References

  1. Medouni-Adrar S, Boulekbache-Makhlouf L, Cadot Y, Medouni-Haroune L, Dahmoune F, Makhoukhe A, Madani K (2015) Ind Crops Prod 77:123–132

    Article  CAS  Google Scholar 

  2. O.I.V. (2015). http://www.oiv.int/en/databases-and-statistics/statistics. Accessed 20 Oct 2017

  3. Galanakis CM (2012) Trends Food Sci Technol 26:68–87

    Article  CAS  Google Scholar 

  4. Kammerer DR, Kammerer J, Valet R, Carle R (2014) Food Res Int 65:2–12

    Article  CAS  Google Scholar 

  5. Karabegović IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić N, Lazić ML (2014) Ind Crops Prod 54:142–148

    Article  CAS  Google Scholar 

  6. Crupi P, Coletta A, Milella RA, Perniola R, Gasparro M, Genghi R, Antonacci D (2012) J Food Sci 77:C174–C181

    Article  CAS  Google Scholar 

  7. Crupi P, Pichierri A, Basile T, Antonacci D (2013) Food Chem 141:802–808

    Article  CAS  PubMed  Google Scholar 

  8. Crupi P, Bergamini C, Perniola R, Dipalmo T, Clodoveo ML, Antonacci D (2015) Eur Food Res Technol 241:487–496

    Article  CAS  Google Scholar 

  9. Carrieri C, Milella RA, Incampo F, Crupi P, Antonacci D, Semeraro N, Colucci M (2013) Food Chem 140:647–653

    Article  CAS  PubMed  Google Scholar 

  10. Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) Food Chem 120:599–606

    Article  CAS  Google Scholar 

  11. Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K (2013) Ind Crops Prod 50:77–87

    Article  CAS  Google Scholar 

  12. Pinelo M, Rubilar M, Jerez M, Sineiro J, José Nunez M (2005) J Agric Food Chem 53:2111–2117

    Article  CAS  PubMed  Google Scholar 

  13. Wong-Paz JE, Contreras-Esquivel JC, Muniz-Marquez D, Belmares R, Rodriguez R, Flores P, Aguilar CN (2014) Am J Agric Biol Sci 9:299–310

    Article  Google Scholar 

  14. Mané C, Souquet JM, Ollé D, Verriés C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) J Agric Food Chem 55:7224–7233

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Weller CL (2006) Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  16. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) Ind Crops Prod 75:141–149

    Article  CAS  Google Scholar 

  17. Santos HM, Capelo JL (2007) Talanta 73:795–802

    Article  CAS  PubMed  Google Scholar 

  18. Carrera C, Ruiz-Rodríguez A, Palma M, Barroso CG (2012) Anal Chim Acta 732:100–104

    Article  CAS  PubMed  Google Scholar 

  19. Novak I, Janeiro P, Seruga M, Oliveira-Brett AM (2008) Anal Chim Acta 630:107–115

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Serradilla JA, Japón-Luján R, Luque de Castro MD (2007) Anal Chim Acta 602:82–88

    Article  CAS  PubMed  Google Scholar 

  21. Dahmoune F, Spigno G, Moussi K, Remini H, Cherbal A, Madani K (2014) Ind Crops Prod 61:31–40

    Article  CAS  Google Scholar 

  22. Derringer G, Suich R (1980) J Qual Tech 12:214–219

    Article  Google Scholar 

  23. Al Bittar S, Périno-Issartier S, Dangles O, Chemat F (2013) Food Chem 141:3268–3272

    Article  CAS  PubMed  Google Scholar 

  24. Aspé E, Fernández K (2011) Ind Crops Prod 34:838–844

    Article  CAS  Google Scholar 

  25. Spigno G, De Faveri DM (2009) J Food Eng 93:210–217

    Article  CAS  Google Scholar 

  26. Spigno G, Tramelli L, De Faveri DM (2007) J Food Eng 81:200–208

    Article  CAS  Google Scholar 

  27. Trošt K, Klančnik A, Vodopivec BM, Lemut MS, Novšak KJ, Možina SS (2016) J Sci Food Agric 96:4809–4820

    Article  CAS  PubMed  Google Scholar 

  28. Nuutila AM, Kammiovirta K, Oksman-Caldentey KM (2002) Food Chem 76:519–525

    Article  CAS  Google Scholar 

  29. Nicoué EE, Savard S, Belkacemi K (2007) J Agric Food Chem 55:5626–5635

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Food Chem 106:804–810

    Article  CAS  Google Scholar 

  31. Corrales M, Toepfl S, Butz P, Knorr D, Tausher B (2008) Inn Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  32. Fabre N, Rustan I, de Hoffmann E, Quentin-Leclercq J (2001) J Am Soc Mass Spectrom12:707–715

    Article  CAS  PubMed  Google Scholar 

  33. Cacace JE, Mazza G (2003) J Food Sci 68:240–248

    Article  CAS  Google Scholar 

  34. Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG (2011) Food Chem 124:1238–1243

    Article  CAS  Google Scholar 

  35. Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) J Agric Food Chem 57:4988–4994

    Article  CAS  PubMed  Google Scholar 

  36. Butković V, Klasinc L, Bors W (2004) J Agric Food Chem 52:2816–2820

    Article  CAS  PubMed  Google Scholar 

  37. Liazid A, Palma M, Brigui J, Barroso CG (2007) J Chromatogr A 1140:29–34

    Article  CAS  PubMed  Google Scholar 

  38. Ince AE, Sahin S, Sumnu G (2014) J Food Sci Technol 51:2776–2782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant from the Italian Ministry of University and Research-MIUR (PON02_00186_2937475, Pro.Ali.Fun project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Crupi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 84 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crupi, P., Dipalmo, T., Clodoveo, M.L. et al. Seedless table grape residues as a source of polyphenols: comparison and optimization of non-conventional extraction techniques. Eur Food Res Technol 244, 1091–1100 (2018). https://doi.org/10.1007/s00217-017-3030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-3030-z

Keywords

Navigation