Skip to main content
Log in

Response surface methodology in the optimization of tea polyphenols-loaded chitosan nanoclusters formulations

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Response surface methodology was used to optimize tea polyphenols-loaded chitosan nanoclusters preparation conditions, including carboxymethyl chitosan concentration, chitosan hydrochloride concentration and amount of tea polyphenols. The responses particle size and entrapment efficiency of nanoclusters were studied. The optimum conditions of carboxymethyl chitosan concentration, chitosan hydrochloride concentration and amount of tea polyphenols were found to be 3.63, 1.19 and 10.94 mg/mL, respectively. The optimized particle size was 301 nm, and entrapment efficacy of nanoclusters was added up to 83.7%. The results demonstrated that Box–Behnken design methodology was an effective way to obtain the optimal formulation of tea polyphenols-loaded chitosan nanoclusters, and the nanoclusters complexation synthesizing through ionic gelation between carboxymethyl chitosan and chitosan hydrochloride was good biomaterials, which could be successfully used to encapsulate tea polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pan X, Niu G, Liu H (2003) Chem Eng Process 42:129–133

    Article  CAS  Google Scholar 

  2. Yang CS, Lambert JD, Sang S (2009) Arch Toxicol 83:11–21

    Article  CAS  Google Scholar 

  3. Khan N, Mukhtar H (2008) Cancer Lett 269:269–280

    Article  CAS  Google Scholar 

  4. Higdon JV, Frei B (2003) Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  Google Scholar 

  5. Chen YA, Hsu KY (2009) Arch Pharm Res 32:149–154

    Article  CAS  Google Scholar 

  6. Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M, Yamanaka K, Miyazawa T (1999) J Agric Food Chem 47:3967–3973

    Article  CAS  Google Scholar 

  7. Henning SM, Niu Y, Liu Y, Lee NH, Hara Y, Thames GD, Minutti RR, Carpenter CL, Wang H, Heber D (2005) J Nutr Biochem 16:610–616

    Article  CAS  Google Scholar 

  8. Woitiski CB, Veiga F, Ribeiro A, Neufeld R (2009) Eur J Pharm Biopharm 73:25–33

    Article  CAS  Google Scholar 

  9. Barichello JM, Morishita M, Takayama K, Nagai T (1999) Drug Dev Ind Pharm 25:471–476

    Article  CAS  Google Scholar 

  10. Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X (2008) J Agric Food Chem 56:7451–7458

    Article  CAS  Google Scholar 

  11. Qi L, Xu Z, Chen M (2007) Eur J Cancer 43:184–193

    Article  CAS  Google Scholar 

  12. Bowman K, Leong KW (2006) Int J Nanomedicine 1:117–128

    Article  CAS  Google Scholar 

  13. Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia L (2000) J Biomed Mater Res 51:107–116

    Article  CAS  Google Scholar 

  14. Zharov VP, Kim JW, Curiel DT, Everts M (2005) Nanomed-nanotechnol 1:326–345

    Article  CAS  Google Scholar 

  15. El-Shabouri MH (2002) Int J Pharm 249:101–108

    Article  CAS  Google Scholar 

  16. Chen F, Zhang ZR, Huang Y (2007) Int J Pharm 336:166–173

    Article  CAS  Google Scholar 

  17. Sayın B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Senel S (2008) Int J Pharm 363:139–148

    Article  Google Scholar 

  18. Qi L, Xu Z (2006) Bioorg Med Chem Lett 16:4243–4245

    Article  CAS  Google Scholar 

  19. Borchard G (2001) Adv Drug Deliver Rev 52:145–150

    Article  CAS  Google Scholar 

  20. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Eur J Pharm Biopharm 57:1–8

    Article  CAS  Google Scholar 

  21. Zhang L, Kosaraju SL (2007) Eur Polym J 43:2956–2966

    Article  CAS  Google Scholar 

  22. Li F, Wang F, Yu F, Fang Y, Xin Z, Yang F, Xu J, Zhao L, Hu Q (2008) Food Chem 111:165–170

    Article  CAS  Google Scholar 

  23. Gao Y, Liu X, Qiao X (2006) Hei Long Jiang Medicine (China) 19: 108–110

    Google Scholar 

  24. Huang J, Huang K, Liu S, Luo Q, Xu M (2007) J Colloid Interface Sci 315:407–414

    Article  CAS  Google Scholar 

  25. Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ (2007) J Nanosci Nanotechnol 7:2833–2841

    Article  CAS  Google Scholar 

  26. Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I (2009) Carbohydr Polym 77:599–606

    Article  CAS  Google Scholar 

  27. de Moura MR, Aouada FA, Mattoso LHC (2008) J Colloid Interface Sci 321:477–483

    Article  Google Scholar 

  28. Ajun W, Yan S, Li G, Huili L (2009) Carbohydr Polym 75:566–574

    Article  Google Scholar 

  29. Gan Q, Wang T (2007) Colloid Surface B 59:24–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871743), the 111 Project of Education Ministry of China (B07030) and the National High Technology Research and Development Program of China (2007AA100403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuhui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Li, F., Fang, Y. et al. Response surface methodology in the optimization of tea polyphenols-loaded chitosan nanoclusters formulations. Eur Food Res Technol 231, 917–924 (2010). https://doi.org/10.1007/s00217-010-1341-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1341-4

Keywords

Navigation