Skip to main content
Log in

Dilute-and-shoot ICPMS quantification of V, Ni, Co, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices based on matrix overcompensation calibration

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analysis of V, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices was performed by inductively coupled plasma mass spectrometry (ICPMS) after simple 50-fold dilution in 1% (v/v) HNO3–0.5% (v/v) HCl–5% (v/v) ethanol. Ethanol was added to overwhelm native organic components and dominate matrix effects. A universal calibration curve was built based on a likewise treated reagent standard series. This new matrix overcompensation calibration (MOC) strategy was developed to effectively compensated for matrix effects of carbon origin and achieved quantitative (92.5–118.8%) recoveries comparable to those by standard addition calibration (92.1–117.8%) and microwave-aided digestion (99.3–116.8%). The LODs were 0.528, 0.204, 0.195, and 2.07 ng mL−1 for toxic elements As, Cd, Pb, and Ni, respectively, adequate for their regulatory monitoring. Ge, Rh, Tb, and Ir were used as internal standards. MOC renders a calibration curve universally applicable to any clear fruit juices of diversified crop, geographic, and manufacturer origins resulting in cost saving and enhanced productivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Konić-Ristić A, Šavikin K, Zdunić G, Janković T, Juranic Z, Menković N, et al. Biological activity and chemical composition of different berry juices. Food Chem. 2011;125(4):1412–7. https://doi.org/10.1016/j.foodchem.2010.10.018.

    Article  CAS  Google Scholar 

  2. Orak HH. Evaluation of antioxidant activity, colour and some nutritional characteristics of pomegranate (Punica granatum L.) juice and its sour concentrate processed by conventional evaporation. Int J Food Sci Nutr. 2009;60(1):1–11. https://doi.org/10.1080/09637480701523306.

    Article  CAS  PubMed  Google Scholar 

  3. Navarro P, Pérez-López AJ, Mercader MT, Carbonell-Barrachina AA, Gabaldon JA. Antioxidant activity, color, carotenoids composition, minerals, vitamin C and sensory quality of organic and conventional mandarin juice, cv. orogrande. Food Sci Technol Int. 2011;17(3):241–8. https://doi.org/10.1177/1082013210382334.

    Article  CAS  PubMed  Google Scholar 

  4. Braganca VLC, Melnikov P, Zanoni LZ. Trace elements in fruit juices. Biol Trace Elem Res. 2012;146(2):256–61. https://doi.org/10.1007/s12011-011-9247-y.

    Article  CAS  PubMed  Google Scholar 

  5. Harmankaya M, Gezgin S, Özcan MM. Comparative evaluation of some macro- and micro-element and heavy metal contents in commercial fruit juices. Environ Monit Assess. 2012;184(9):5415–20. https://doi.org/10.1007/s10661-011-2349-3.

    Article  CAS  PubMed  Google Scholar 

  6. Nordberg GF, Nordberg M, Costa M (2022) Chapter 1 - Toxicology of metals: Overview, definitions, concepts, and trends. This chapter is partly based on the chapter "Toxicology of Metals: Overview, Definitions, Concepts, and Trends" by Gunnar F. Nordberg, Bruce A. Fowler, and Monica Nordberg in the fourth edition of this handbook. In: Nordberg GF, Costa M (eds) Handbook on the Toxicology of Metals (Fifth Edition). Academic Press, pp 1–14. https://doi.org/10.1016/B978-0-12-823292-7.00029-2

  7. Aggett P, Nordberg GF, Nordberg M (2022) Chapter 17 - Essential metals: Assessing risks from deficiency and toxicity. In: Nordberg GF, Costa M (eds) Handbook on the Toxicology of Metals (Fifth Edition). Academic Press, pp 385–406. https://doi.org/10.1016/B978-0-12-823292-7.00020-6

  8. Oliveira AP, Neto JAG, Nóbrega JA, Correia PRM, Oliveira PV. Determination of selenium in nutritionally relevant foods by graphite furnace atomic absorption spectrometry using arsenic as internal standard. Food Chem. 2005;93(2):355–60. https://doi.org/10.1016/j.foodchem.2004.11.024.

    Article  CAS  Google Scholar 

  9. Farzana Akter K, Chen Z, Smith L, Davey D, Naidu R. Speciation of arsenic in ground water samples: a comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta. 2005;68(2):406–15. https://doi.org/10.1016/j.talanta.2005.09.011.

    Article  CAS  PubMed  Google Scholar 

  10. Lai G, Chen G, Chen T. Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry. Food Chem. 2016;190:158–63. https://doi.org/10.1016/j.foodchem.2015.05.052.

    Article  CAS  PubMed  Google Scholar 

  11. Szymczycha-Madeja A, Welna M. Evaluation of a simple and fast method for the multi-elemental analysis in commercial fruit juice samples using atomic emission spectrometry. Food Chem. 2013;141(4):3466–72. https://doi.org/10.1016/j.foodchem.2013.06.067.

    Article  CAS  PubMed  Google Scholar 

  12. Ghuniem MM, Khorshed MA, Souaya ER. Optimization and validation of an analytical method for the determination of some trace and toxic elements in canned fruit juices using quadrupole inductively coupled plasma mass spectrometer. J AOAC Int. 2019;102(1):262–70. https://doi.org/10.5740/jaoacint.18-0022.

    Article  CAS  Google Scholar 

  13. Lobinski R, Potin-Gautier M. Metals and biomolecules - bioinorganic analytical chemistry. Analusis. 1998;26(6):21–4.

    Article  Google Scholar 

  14. Froes RES, Neto WB, Silva NOCE, Naveira RLP, Nascentes CC, da Silva JBB. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry. Spectrochim Acta Part B: At Spectrosc. 2009;64(6):619–22. https://doi.org/10.1016/j.sab.2009.06.006.

    Article  CAS  Google Scholar 

  15. Tormen L, Torres DP, Dittert IM, Araujo RGO, Frescura VLA, Curtius AJ. Rapid assessment of metal contamination in commercial fruit juices by inductively coupled mass spectrometry after a simple dilution. J Food Compos Anal. 2011;24(1):95–102. https://doi.org/10.1016/j.jfca.2010.06.004.

    Article  CAS  Google Scholar 

  16. Zhang N, Li Z, Zheng J, Yang X, Shen K, Zhou T, et al. Multielemental analysis of botanical samples by ICP-OES and ICP-MS with focused infrared lightwave ashing for sample preparation. Microchem J. 2017;134:68–77. https://doi.org/10.1016/j.microc.2017.05.006.

    Article  CAS  Google Scholar 

  17. Cautela D, Santelli F, Boscaino F, Laratta B, Servillo L, Castaldo D. Elemental content and nutritional study of blood orange juice. J Sci Food Agric. 2009;89(13):2283–91. https://doi.org/10.1002/jsfa.3722.

    Article  CAS  Google Scholar 

  18. Jalbani N, Kazi TG, Arain BM, Jamali MK, Afridi HI, Sarfraz RA. Application of factorial design in optimization of ultrasonic-assisted extraction of aluminum in juices and soft drinks. Talanta. 2006;70(2):307–14. https://doi.org/10.1016/j.talanta.2006.02.045.

    Article  CAS  PubMed  Google Scholar 

  19. Dugo G, Di Bella G, Rando R, Saitta M. 4.22 - Sample preparation for the determination of metals in food samples. In: Pawliszyn J, editor. Comprehensive sampling and sample preparation. Oxford: Academic Press; 2012. p. 495–519. https://doi.org/10.1016/B978-0-12-381373-2.00146-0.

    Chapter  Google Scholar 

  20. Larsen EH, Stürup S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J Anal At Spectrom. 1994;9(10):1099–105. https://doi.org/10.1039/ja9940901099.

    Article  CAS  Google Scholar 

  21. Leclercq A, Nonell A, Torro JLT, Bresson C, Vio L, Vercouter T, et al. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations. Anal Chim Acta. 2015;885:57–91. https://doi.org/10.1016/j.aca.2015.04.039.

    Article  CAS  PubMed  Google Scholar 

  22. Leclercq A, Nonell A, Torro JLT, Bresson C, Vio L, Vercouter T, et al. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations. Anal Chim Acta. 2015;885:33–56. https://doi.org/10.1016/j.aca.2015.03.049.

    Article  CAS  PubMed  Google Scholar 

  23. CEM. Digestion of Fruit Juice - MARS 6. Method Note. https://cem.com/digestion-of-fruit-juice-mars-6.  Accessed 23 Jan 2023

  24. Conklin SD, Chen PE. Quantification of four arsenic species in fruit juices by ion-chromatography–inductively coupled plasma–mass spectrometry. Food Addi Contam A. 2012;29(8):1272–9.

    Article  CAS  Google Scholar 

  25. Cindrić IJ, Zeiner M, Kröppl M, Stingeder G. Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J. 2011;99(2):364–9. https://doi.org/10.1016/j.microc.2011.06.007.

    Article  CAS  Google Scholar 

  26. Welna M, Szymczycha-Madeja A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES. Food Chem. 2014;159:414–9. https://doi.org/10.1016/j.foodchem.2014.03.046.

    Article  CAS  PubMed  Google Scholar 

  27. Agatemor C, Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: a review. Anal Chim Acta. 2011;706(1):66–83. https://doi.org/10.1016/j.aca.2011.08.027.

    Article  CAS  PubMed  Google Scholar 

  28. Tan SH, Horlick G. Matrix-effect observations in inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1987;2(8):745–63. https://doi.org/10.1039/ja9870200745.

    Article  CAS  Google Scholar 

  29. Grindlay G, Mora J, de Loos-Vollebregt M, Vanhaecke F. A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry. Spectrochim Acta B-At Spectrosc. 2013;86:42–9. https://doi.org/10.1016/j.sab.2013.05.002.

    Article  CAS  Google Scholar 

  30. Carter JA, Barros AI, Nobrega JA, Donati GL. Traditional calibration methods in atomic spectrometry and new calibration strategies for inductively coupled plasma mass spectrometry. Front Chem. 2018;6:504. https://doi.org/10.3389/fchem.2018.00504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cuadros-Rodríguez L, Bagur-González MG, Sánchez-Viñas M, González-Casado A, Gómez-Sáez AM. Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A. 2007;1158(1):33–46. https://doi.org/10.1016/j.chroma.2007.03.030.

    Article  CAS  PubMed  Google Scholar 

  32. Vandecasteele C, Vanhoe H, Dams R. Inductively-coupled plasma-mass spectrometry of biological samples. J Anal At Spectrom. 1993;8(6):781–6. https://doi.org/10.1039/ja9930800781.

    Article  CAS  Google Scholar 

  33. Cabrita MJ, Martins N, Barrulas P, Garcia R, Dias CB, Pérez-Álvarez EP, et al. Multi-element composition of red, white and palhete amphora wines from Alentejo by ICPMS. Food Control. 2018;92:80–5. https://doi.org/10.1016/j.foodcont.2018.04.041.

    Article  CAS  Google Scholar 

  34. Woods G. Measurement of trace elements in malt spirit beverages (whisky) by 7500cx ICP-MS. Agilent Application Note 2007.

  35. Sánchez C, Lienemann C-P, Todolí J-L. Analysis of bioethanol samples through inductively coupled plasma mass spectrometry with a total sample consumption system. Spectrochim Acta B: At Spectrosc. 2016;124:99–108. https://doi.org/10.1016/j.sab.2016.08.018.

    Article  CAS  Google Scholar 

  36. Nie XD, He XM, Li LB, Xie HL. The matrix effects of organic acid compounds in ICP-MS. Spectrosc Spectr Anal. 2007;27(7):1420–3.

    CAS  Google Scholar 

  37. US Customs and Border Protection. Brix values of unconcentrated natural fruit juices. Washington, DC. 1988. https://www.law.cornell.edu/cfr/text/19/151.91. Accessed June 7, 2023 2023.

  38. Vanhaecke F, Vanhoe H, Dams R, Vandecasteele C. The use of internal standards in ICP-MS. Talanta. 1992;39(7):737–42. https://doi.org/10.1016/0039-9140(92)80088-U.

    Article  CAS  PubMed  Google Scholar 

  39. Koppenaal DW, Eiden GC, Barinaga CJ. Collision and reaction cells in atomic mass spectrometry: development, status, and applications. J Anal At Spectrom. 2004;19(5):561–70. https://doi.org/10.1039/b403510k.

    Article  CAS  Google Scholar 

  40. Taylor VF, March RE, Longerich HP, Stadey CJ. A mass spectrometric study of glucose, sucrose, and fructose using an inductively coupled plasma and electrospray ionization. Int J Mass spectrom. 2005;243(1):71–84. https://doi.org/10.1016/j.ijms.2005.01.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoying Chen or Bunhong Lai.

Ethics declarations

Declarations

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity employer.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Food Safety Analysis 2.0 with guest editor Steven J. Lehotay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Lai, B. Dilute-and-shoot ICPMS quantification of V, Ni, Co, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices based on matrix overcompensation calibration. Anal Bioanal Chem 416, 839–847 (2024). https://doi.org/10.1007/s00216-023-05071-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05071-1

Keywords

Navigation