Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples


The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 μL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient (r2 > 0.9905) in the range of 0.1 to 100 μg L−1, for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80–123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L−1, and from 3.41 to 62.11 ng L−1, respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Ramírez-Malule H, Quiñones-Murillo DH, Manotas-Duque D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg Contam. 2020;6:179–93. https://doi.org/10.1016/j.emcon.2020.05.001.

    Article  Google Scholar 

  2. 2.

    Richardson SD, Kimura SY. Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions. Environ Technol Innov. 2017;8:40–56. https://doi.org/10.1016/j.eti.2017.04.002.

    Article  Google Scholar 

  3. 3.

    Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, et al. Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J Environ Manag. 2019;237:408–23. https://doi.org/10.1016/j.jenvman.2019.02.100.

    CAS  Article  Google Scholar 

  4. 4.

    Bieber S, Greco G, Grosse S, Letzel T. RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem. 2017;89:7907–14. https://doi.org/10.1021/acs.analchem.7b00859.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Kim K-H, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2016;575:525–35. https://doi.org/10.1016/j.scitotenv.2016.09.009.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    de Souza RM, Seibert D, Quesada HB, de Jesus Bassetti F, Fagundes-Klen MR, Bergamasco R. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ Prot. 2020;135:22–37. https://doi.org/10.1016/j.psep.2019.12.035.

    CAS  Article  Google Scholar 

  7. 7.

    Rice J, Lubben A, Kasprzyk-Hordern B. A multi-residue method by supercritical fluid chromatography coupled with tandem mass spectrometry method for the analysis of chiral and non-chiral chemicals of emerging concern in environmental samples. Anal Bioanal Chem. 2020;412:5563–81. https://doi.org/10.1007/s00216-020-02780-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kharbouche L, Gil García MD, Lozano A, Hamaizi H, Galera MM. Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS. Talanta. 2019;199:612–9. https://doi.org/10.1016/j.talanta.2019.02.092.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lopes D, Dias AN, Merib J, Carasek E. Hollow-fiber renewal liquid membrane extraction coupled with 96-well plate system as innovative high-throughput configuration for the determination of endocrine disrupting compounds by high-performance liquid chromatography-fluorescence and diode array de. Anal Chim Acta. 2018;1040:33–40. https://doi.org/10.1016/j.aca.2018.07.032.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Benedetti B, Majone M, Cavaliere C, Montone CM, Fatone F, Frison N, et al. Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: development of a modified QuEChERS method coupled to LC–MS/MS. Microchem J. 2020;155:104732. https://doi.org/10.1016/j.microc.2020.104732.

    CAS  Article  Google Scholar 

  11. 11.

    Arismendi D, Becerra-Herrera M, Cerrato I, Richter P. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction–derivatization-gas chromatography/mass spectrometry. Talanta. 2019;201:480–9. https://doi.org/10.1016/j.talanta.2019.03.120.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, et al. Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: a review. Crit Rev Anal Chem. 2019;49:160–86. https://doi.org/10.1080/10408347.2018.1496010.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Pano-Farias NS, Ceballos-Magaña SG, Gonzalez J, Jurado JM, Muñiz-Valencia R. Supercritical fluid chromatography with photodiode array detection for pesticide analysis in papaya and avocado samples. J Sep Sci. 2015;38:1240–7. https://doi.org/10.1002/jssc.201401174.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    West C. Current trends in supercritical fluid chromatography. Anal Bioanal Chem. 2018;410:6441–57. https://doi.org/10.1007/s00216-018-1267-4.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Salvatierra-stamp V, Muñiz-Valencia R, Jurado JM, Ceballos-Magaña SG. Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchem J. 2018;140. https://doi.org/10.1016/j.microc.2018.04.012.

  16. 16.

    Pilařová V, Plachká K, Khalikova MA, Svec F, Nováková L. Recent developments in supercritical fluid chromatography – mass spectrometry: is it a viable option for analysis of complex samples? TrAC Trends Anal Chem. 2019;112:212–25. https://doi.org/10.1016/j.trac.2018.12.023.

    CAS  Article  Google Scholar 

  17. 17.

    Liang Y, Zhou T. Recent advances of online coupling of sample preparation techniques with ultra high performance liquid chromatography and supercritical fluid chromatography. J Sep Sci. 2019;42:226–42. https://doi.org/10.1002/jssc.201800721.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS. Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012-2018. Analyst. 2019;144:5324–52. https://doi.org/10.1039/c9an00826h.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Saito M. History of supercritical fluid chromatography: instrumental development. J Biosci Bioeng. 2013;115:590–9. https://doi.org/10.1016/j.jbiosc.2012.12.008.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Guillarme D, Desfontaine V, Heinisch S, Veuthey JL. What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry? J Chromatogr B Anal Technol Biomed Life Sci. 2018;1083:160–70. https://doi.org/10.1016/j.jchromb.2018.03.010.

    CAS  Article  Google Scholar 

  21. 21.

    Jalili V, Barkhordari A, Ghiasvand A. New extraction media in microextraction techniques. A review of reviews. Microchem J. 2020;153:104386. https://doi.org/10.1016/j.microc.2019.104386.

    CAS  Article  Google Scholar 

  22. 22.

    Carasek E, Morés L, Merib J. Basic principles, recent trends and future directions of microextraction techniques for the analysis of aqueous environmental samples. Trends Environ Anal Chem. 2018;19. https://doi.org/10.1016/j.teac.2018.e00060.

  23. 23.

    Carabajal M, Teglia CM, Cerutti S, Culzoni MJ, Goicoechea HC. Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem J. 2020;152:104436. https://doi.org/10.1016/j.microc.2019.104436.

    CAS  Article  Google Scholar 

  24. 24.

    Basheer C, Kamran M, Ashraf M, Lee HK. Enhancing liquid-phase microextraction efficiency through chemical reactions. TrAC Trends Anal Chem. 2019;118:426–33. https://doi.org/10.1016/j.trac.2019.05.049.

    CAS  Article  Google Scholar 

  25. 25.

    Rutkowska M, Płotka-Wasylka J, Sajid M, Andruch V. Liquid–phase microextraction: a review of reviews. Microchem J. 2019;149. https://doi.org/10.1016/j.microc.2019.103989.

  26. 26.

    Ghambarian M, Yamini Y, Esrafili A. Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchim Acta. 2012;177:271–94. https://doi.org/10.1007/s00604-012-0773-x.

    CAS  Article  Google Scholar 

  27. 27.

    Prosen H. Applications of hollow-fiber and related microextraction techniques for the determination of pesticides in environmental and food samples—a mini review. Separations. 2019;6:1–24. https://doi.org/10.3390/separations6040057.

    CAS  Article  Google Scholar 

  28. 28.

    Alsharif AMA, Tan GH, Choo YM, Lawal A. Efficiency of hollow fiber liquid-phase microextraction chromatography methods in the separation of organic compounds: a review. J Chromatogr Sci. 2017;55:378–91. https://doi.org/10.1093/chromsci/bmw188.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Jumhawan U, Bamba T. Green separation techniques for -omics platforms: supercritical fluid chromatography: Elsevier; 2020. https://doi.org/10.1016/b978-0-08-100596-5.22823-0.

  30. 30.

    Chen L, Dean B, La H, Chen Y, Liang X. Stereoselective supercritical fluidic chromatography –mass spectrometry (SFC-MS) as a fast bioanalytical tool to assess chiral inversion in vivo and in vitro. Int J Mass Spectrom. 2019;444:116172. https://doi.org/10.1016/j.ijms.2019.06.008.

    CAS  Article  Google Scholar 

  31. 31.

    Secretaría de Economía, Proyecto De Norma Mexicana Proy-Nmx-Aa-121/1-Scfi-2008 Análisis De Agua - Aguas Naturales Epicontinentales, Costeras Y Marinas – Muestreo - (Todas Las Partes Cancelan Al Proy Nmx-Aa-121-Scfi-2006) Water. 2008.

  32. 32.

    ICH. Guidance for industry Q2B validation of analytical procedures: methodology. 1996.

  33. 33.

    Commission of European-Communities. Council Directive 2002/657/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities. 2002:8–36.

  34. 34.

    Kokosa JM. Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. TrAC Trends Anal Chem. 2019;118:238–47. https://doi.org/10.1016/j.trac.2019.05.012.

    CAS  Article  Google Scholar 

  35. 35.

    Valenzuela EF, Menezes HC, Cardeal ZL. New passive sampling device for effective monitoring of pesticides in water. Anal Chim Acta. 2019;1054:26–37. https://doi.org/10.1016/j.aca.2018.12.017.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Schulze S, Paschke H, Meier T, Muschket M, Reemtsma T, Berger U. A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2020;412:4941–52. https://doi.org/10.1007/s00216-020-02722-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


Salvatierra-Stamp thanks CONACYT for the grant provided. This work was also supported by the Red Temática de Toxicología de Plaguicidas-CONACYT.

Author information



Corresponding author

Correspondence to Roberto Muñiz-Valencia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(PDF 472 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salvatierra-Stamp, V., Ceballos-Magaña, S.G., Pano-Farias, N.S. et al. Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples. Anal Bioanal Chem (2021). https://doi.org/10.1007/s00216-021-03202-0

Download citation


  • Multiclass emerging contaminants
  • Hollow fiber liquid-phase microextraction
  • Supercritical fluid chromatography
  • Water samples