Polydopamine nanospheres with multiple quenching effect on TiO2/CdS:Mn for highly sensitive photoelectrochemical assay of tumor markers


A photoelectrochemical (PEC) immunosensing strategy based on the multiple quenching of polydopamine nanoparticles (PDA NPs) to Mn2+-doped CdS-modified TiO2 nanoparticles (TiO2/CdS:Mn) was designed for the highly sensitive detection of carcinoembryonic antigen (CEA). The uniform PDA NPs possessed good dispersibility, good biocompatibility, and abundant functional groups for biomolecule assembly. They also had unique photophysical properties, with light absorption spanning the visible to infrared light range. When the immune-recognition brought the PDA NPs close to the TiO2/CdS:Mn interface, the PDA NPs competed with TiO2/CdS:Mn to absorb light, consumed photoelectrons generated in the TiO2/CdS:Mn, and hindered the access of electron donors to photoactive materials. The contribution from these aspects thus led to a significant decrease in photocurrent. Benefiting from the multiple quenching mechanism, the PEC immunosensor showed high sensitivity for CEA detection. Under optimal conditions, a low detection limit of 0.02 pg/mL and a wide linear relationship from 0.1 pg/mL to 100 ng/mL were obtained. The immunoassay showed good reproducibility and stability, and good selectivity and high accuracy in serum sample analysis. In this regard, PEC immunosensors may have great application potential for screening tumor markers and the prevention and monitoring of serious diseases.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Haddour N, Chauvin J, Chantal G, Serge C. Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody. J Am Chem Soc. 2006;9:9693–8.

    Article  Google Scholar 

  2. 2.

    Zhao WW, Xu JJ, Chen HY. Photoelectrochemical immunoassays. Anal Chem. 2018;90:615–27.

    CAS  Article  Google Scholar 

  3. 3.

    Shu J, Tang DP. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem. 2020;92:363–77.

    CAS  Article  Google Scholar 

  4. 4.

    Fan GC, Shi XM, Zhang JR, Zhu JJ. Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem. 2016;88:10352–6.

    CAS  Article  Google Scholar 

  5. 5.

    Zhou Q, Tang DP. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trends Anal Chem. 2020;124:115814.

    CAS  Article  Google Scholar 

  6. 6.

    Pardo-Yissar V, Katz E, Wasserman JL, Willner I. Acetylcholine esterase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors. J Am Chem Soc. 2003;125:622–3.

    CAS  Article  Google Scholar 

  7. 7.

    Yu SY, Xue TY, Zhu LB, Fan GC, Han DM, Wang CS, et al. Tyrosinase-encapsulated liposomes: toward enzyme-induced in situ sensitization of semiconductor for sensitive photoelectrochemical immunoassay. Biosens Bioelectron. 2019;136:128–31.

    CAS  Article  Google Scholar 

  8. 8.

    Zhao WW, Ma ZY, Yu PP, Dong XY, Xu JJ, Chen HY. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem. 2012;84:917–23.

    CAS  Article  Google Scholar 

  9. 9.

    Hu CG, Zheng JO, Su XY, Wang J, Wu WZ, Hu SS. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem. 2013;85:10612–9.

    CAS  Article  Google Scholar 

  10. 10.

    Hu T, Zheng YN, Li MJ, Liang WB, Chai YQ, Yuan R. A highly sensitive photoelectrochemical assay with donor−acceptor-type material as photoactive material and polyaniline as signal enhancer. Anal Chem. 2018;90:6096–101.

    CAS  Article  Google Scholar 

  11. 11.

    Fan GC, Ren XL, Zhu C, Zhang JR, Zhu JJ. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosens Bioelectron. 2014;59:45–53.

    CAS  Article  Google Scholar 

  12. 12.

    Zhao WW, Dong XY, Wang J, Kong FY, Xu JJ, Chen HY. Immunogold labeling-induced synergy effect for amplified photoelectrochemical immunoassay of prostate-specific antigen. Chem Commun. 2012;48:5253–5.

    CAS  Article  Google Scholar 

  13. 13.

    Song J, Wang JM, Wang XY, Zhao W, Zhao YQ, Wu S, et al. Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosens Bioelectron. 2016;80:614–20.

    CAS  Article  Google Scholar 

  14. 14.

    Lin YX, Zhou Q, Lin YP, Lu MH, Tang DP. Mesoporous carbon-enriched palladium nanostructures with redox activity for enzyme-free electrochemical immunoassay of brevetoxin B. Anal Chim Acta. 2015;887:67–74.

    CAS  Article  Google Scholar 

  15. 15.

    Wang GL, Shu JX, Dong YM, Wu XM, Li ZJ. An ultra sensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification. Biosens Bioelectron. 2015;66:283–9.

    Article  Google Scholar 

  16. 16.

    Zhu H, Fan GC, Abdel-Halim ES, Zhang JR, Zhu JJ. Ultra sensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2 NWs/au hybrid structure amplified by quenching effect of Ab2@V2+ conjugates. Biosens Bioelectron. 2016;77:339–46.

    CAS  Article  Google Scholar 

  17. 17.

    Song J, Wu S, Yang XL, Yuan JL. A carboxylated graphene nanodisks/glucose oxidase nanotags and Mn:CdS/TiO2 matrix based dual signal amplification strategy for ultrasensitive photoelectrochemical detection of tumor markers. Analyst. 2017;142:4647–54.

    CAS  Article  Google Scholar 

  18. 18.

    Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater. 2013;25:1353–9.

    CAS  Article  Google Scholar 

  19. 19.

    Liu YL, Ai KL, Lu LH. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114:5057–115.

    CAS  Article  Google Scholar 

  20. 20.

    Riesz J, Sarna T, Meredith P. Radiative relaxation in synthetic pheomelanin. J Phys Chem B. 2006;110:13985–90.

    CAS  Article  Google Scholar 

  21. 21.

    Wu P, Pan JB, Li X, Hou XD, Xu JJ, Chen HY. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. Chem Eur J. 2015;21:5129–35.

    CAS  Article  Google Scholar 

  22. 22.

    Liu K, Deng HP, Wang YY, Cheng SB, Xiong XX, Li CY. A sandwich-type photoelectrochemical immunosensor based on ReS2 nanosheets for high-performance determination of carcinoembryonic antigen. Sens Actuator B: Chem. 2020;320:128341.

    CAS  Article  Google Scholar 

  23. 23.

    Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. Intrinsically Mn2+-chelated polydopamine nanoparticles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells. ACS Appl Mater Interfaces. 2015;7:16946–52.

    CAS  Article  Google Scholar 

  24. 24.

    Ma S, Sui J, Cao L, Li Y, Dong HZ, Zhang Q, et al. Synthesis of Cu2ZnSnS4 thin film through chemical successive ionic layer adsorption and reactions. App Sur Sci. 2015;349:430–6.

    CAS  Article  Google Scholar 

  25. 25.

    Na Y, Hua B, Yang QL, Liu J, Zhou L, Fan RQ, et al. CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chin Chem Lett. 2015;26:141–4.

    CAS  Article  Google Scholar 

  26. 26.

    Ramakrishna G, Singh AK, Palit DK, Ghosh HN. Dynamics of interfacial electron transfer from photoexcited quinizarin into the conduction band of TiO2 and surface states of ZrO2 nanoparticles. J Phys Chem B. 2004;108:4775–83.

    CAS  Article  Google Scholar 

  27. 27.

    Xie YZ, Zhang M, Bin QY, Xie SL, Guo L, Cheng FL, et al. Photoelectrochemical immunosensor based on CdSe@BiVO4 co-sensitized TiO2 for carcinoembryonic antigen. Biosens Bioelectron. 2020;150:111949.

    CAS  Article  Google Scholar 

  28. 28.

    Huang D, Wang L, Zhan Y, Zou LN, Ye BX. Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of au@CuS-GR. Biosens Bioelectron. 2019;140:111358.

    CAS  Article  Google Scholar 

  29. 29.

    Wang YG, Zhao GH, Zhang Y, Du B, Wei Q. Ultrasensitive photoelectrochemical immunosensor based on cu-doped TiO2 and carbon nitride for detection of carcinoembryonic antigen. Carbon. 2019;146:276–83.

    CAS  Article  Google Scholar 

  30. 30.

    Zhang B, Jia YJ, Wang J, Hu X, Zhao ZH, Cheng Y. Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Microchim Acta. 2019;186:186–633.

    Article  Google Scholar 

  31. 31.

    Liu LX, Fan GC, Zhang JR, Zhu JJ. Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal Chim Acta. 2018;1027:33–40.

    CAS  Article  Google Scholar 

  32. 32.

    Gong YT, Wu XM, Dong YM, Liu QY, Li ZJ, Wang GL. CathodicPhotoelectrochemical immunoassay based on glucose-oxidase mediated biocatalysis to inhibit the exciton trapping of cupric ions for PbS quantum dots. Sens Actuators B: Chem. 2018;266:408–15.

    CAS  Article  Google Scholar 

  33. 33.

    Li JJ, Zhang Y, Kuang X, Wang ZL, Wei Q. A network signal amplification strategy of ultrasensitive photoelectrochemical immunosensing carcinoembryonic antigen based on CdSe/melamine network as label. Biosens Bioelectron. 2016;85:764–70.

    CAS  Article  Google Scholar 

  34. 34.

    Yang HM, Sun GQ, Zhang LN, Zhang Y, Song XR, Yu JH, et al. Ultrasensitive photoelectrochemical immunoassay based on CdS@Cu2O co-sensitized porous ZnO nanosheets and promoted by multiwalled carbon nanotubes. Sens Actuators B: Chem. 2016;234:658–66.

    CAS  Article  Google Scholar 

  35. 35.

    Fan GC, Zhu H, Du D, Zhang JR, Zhu JJ, Lin YH. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn core−shell quantum dots-sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies. Anal Chem. 2016;88:3392–9.

    CAS  Article  Google Scholar 

  36. 36.

    Shu J, Qiu ZL, Zhuang JY, Xu MD, Tang DP. In situ generation of Electron donor to assist signal amplification on porphyrin-sensitized titanium dioxide nanostructures for ultrasensitive photoelectrochemical immunoassay. ACS Appl Mater Interfaces. 2015;7:23812–8.

    CAS  Article  Google Scholar 

  37. 37.

    Ge L, Wang YH, Yang HM, Yang P, Cheng X, Yan M, et al. Photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light. Anal Chim Acta. 2014;828:27–33.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China for the project (21675018) and the Fundamental Research Funds for the Central Universities (No. DUT18LK37).

Author information



Corresponding author

Correspondence to Shuo Wu.

Ethics declarations

Serum samples were contributed by volunteers, and ethics approval was obtained from the Biological and Medical Ethics Committee of Dalian University of Technology.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(PDF 781 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Yang, X., Guan, X. et al. Polydopamine nanospheres with multiple quenching effect on TiO2/CdS:Mn for highly sensitive photoelectrochemical assay of tumor markers. Anal Bioanal Chem (2021). https://doi.org/10.1007/s00216-020-03114-5

Download citation


  • Photoelectrochemical immunosensor
  • Polydopamine nanospheres
  • Multiple quenching mechanism
  • Tumor markers