Analytical strategy for studying the formation and stability of multilayered films containing gold nanoparticles

Abstract

The design of layer-by-layer (LbL) polyelectrolyte films including nanoparticles is a growing field of innovation in a wide range of biomedical applications. Gold nanoparticles (AuNPs) are very attractive for further biomolecule coupling to induce a pharmacological effect. Nanostructured LbL films coupled with such metallic species show properties that depend on the conditions of construction, i.e. the polymer nature and dissolution buffer. Tripartite LbL films (polycation, AuNP, and polyanion) were evaluated using two different polycationic polymers (poly(allylamine hydrochloride) (PAH), poly(ethylene imine) (PEI)) and various medium conditions (salts, i.e. phosphate, Tris or Tris-NaCl buffers, and concentration). AuNP incorporation and film stability were analysed by visible spectrophotometry, capillary zone electrophoresis, a quartz crystal microbalance, and high-performance liquid chromatography. The ideal compromise between AuNP loading and film stability was obtained using PAH prepared in Tris-NaCl buffer (0.01–0.15 M). This condition allowed the formation of a LbL film that was more stable than the film with PEI and provided an AuNP quantity that was 4.8 times greater than that of the PAH-PBS-built film. In conclusion, this work presents an analytical strategy for the characterization of nanostructured multilayer films and optimization of LbL films enriched with AuNPs to design biomedical device coatings.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Acharya G, Lee CH, Lee Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. Moretti C, editor. PLoS One. 2012;7(8):e43100.

    CAS  Article  Google Scholar 

  2. 2.

    Kim B-S, Smith RC, Poon Z, Hammond PT. MAD (multiagent delivery) nanolayer: delivering multiple therapeutics from hierarchically assembled surface coatings . Langmuir. 2009 Dec 15;25(24):14086–92.

    CAS  Article  Google Scholar 

  3. 3.

    Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev. 2011;63(9):822–36.

    CAS  Article  Google Scholar 

  4. 4.

    Garza JM, Schaaf P, Muller S, Ball V, Stoltz J-F, Voegel J-C, et al. Multicompartment films made of alternate polyelectrolyte multilayers of exponential and linear growth. Langmuir. 2004;20(17):7298–302.

    CAS  Article  Google Scholar 

  5. 5.

    Pallotta A, Clarot I, Sobocinski J, Fattal E, Boudier A. Nanotechnologies for medical devices: potentialities and risks. ACS Appl Bio Mater. 2019;2(1):1–13.

    CAS  Article  Google Scholar 

  6. 6.

    Diamanti E, Andreozzi P, Anguiano R, Yate L, Gregurec D, Politakos N, et al. The effect of top-layer chemistry on the formation of supported lipid bilayers on polyelectrolyte multilayers: primary versus quaternary amines. Phys Chem Chem Phys. 2016;18(47):32396–405.

    CAS  Article  Google Scholar 

  7. 7.

    Diamanti E, Andreozzi P, Kirby C, Anguiano R, Yate L, Heinz H, et al. Study of the impact of polyanions on the formation of lipid bilayers on top of polyelectrolyte multilayers with poly(allylamine hydrochloride) as the top layer. J Phys Chem B. 2017;121(5):1158–67.

    CAS  Article  Google Scholar 

  8. 8.

    Wang Y, Guo X, Pan R, Han D, Chen T, Geng Z, et al. Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Mater Sci Eng C. 2015;53:222–8.

    CAS  Article  Google Scholar 

  9. 9.

    Liu S, Liu S, Liu X, Zhao J, Cui W, Fan C. Antibacterial antiadhesion membranes from silver-nanoparticle-doped electrospun poly( L -lactide) nanofibers. J Appl Polym Sci. 2013;129(6):3459–65.

    CAS  Article  Google Scholar 

  10. 10.

    Liu Y, Chen W, Kim H-I. Antibacterial activity of pH-sensitive genipin cross-linked chitosan/poly(ethylene glycol)/silver nanocomposites. Polym Adv Technol. 2012;23(1):8–14.

    CAS  Article  Google Scholar 

  11. 11.

    Kim C-Y, Xu L, Lee E-H, Choa Y-H. Magnetic silicone composites with uniform nanoparticle dispersion as a biomedical stent coating for hyperthermia. Adv Polym Technol. 2013;32(S1):E714–23.

    CAS  Article  Google Scholar 

  12. 12.

    Li W-T, Wang M-H, Li Y-J, Sun Y, Li J-C. Linker-free layer-by-layer self-assembly of gold nanoparticle multilayer films for direct electron transfer of horseradish peroxidase and H2O2 detection. Electrochim Acta. 2011;56(20):6919–24.

    CAS  Article  Google Scholar 

  13. 13.

    Tian S, Liu J, Zhu T, Knoll W. Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater. 2004;16(21):4103–8.

    CAS  Article  Google Scholar 

  14. 14.

    Pallotta A, Parent M, Clarot I, Luo M, Borr V, Dan P, et al. Blood compatibility of multilayered polyelectrolyte films containing immobilized gold nanoparticles. Part Part Syst Charact. 2017;34(1):1600184.

    Article  Google Scholar 

  15. 15.

    Mertz D, Vogt C, Hemmerlé J, Debry C, Voegel J-C, Schaaf P, et al. Tailored design of mechanically sensitive biocatalytic assemblies based on polyelectrolyte multilayers. J Mater Chem. 2011;21(23):8324.

    CAS  Article  Google Scholar 

  16. 16.

    Yoshida K, Sato K, Ono T, Dairaku T, Kashiwagi Y. Preparation of Nafion/polycation layer-by-layer films for adsorption and release of insulin. Polymers. 2018;10(8):812.

    Article  Google Scholar 

  17. 17.

    Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277(5330):1232–7.

    CAS  Article  Google Scholar 

  18. 18.

    Pallotta A, Philippe V, Boudier A, Leroy P, Clarot I. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles. Talanta. 2018;179:307–11.

    CAS  Article  Google Scholar 

  19. 19.

    Tournebize J, Boudier A, Sapin-Minet A, Maincent P, Leroy P, Schneider R. Role of gold nanoparticles capping density on stability and surface reactivity to design drug delivery platforms. ACS Appl Mater Interfaces. 2012;4(11):5790–9.

    CAS  Article  Google Scholar 

  20. 20.

    Pallotta A, Boudier A, Leroy P, Clarot I. Characterization and stability of gold nanoparticles depending on their surface chemistry: contribution of capillary zone electrophoresis to a quality control. J Chromatogr A. 2016;1461:179–84.

    CAS  Article  Google Scholar 

  21. 21.

    Beurton J, Clarot I, Stein J, Creusot B, Marcic C, Marchioni E, et al. Long-lasting and controlled antioxidant property of immobilized gold nanoparticles for intelligent packaging. Colloids Surf B: Biointerfaces. 2019;176:439–48.

    CAS  Article  Google Scholar 

  22. 22.

    Suh J, Paik HJ, Hwang BK. Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg Chem. 1994;22(3):318–27.

    CAS  Article  Google Scholar 

  23. 23.

    Kim K, Ryoo H, Lee YM, Shin KS. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy. J Colloid Interface Sci. 2010;342(2):479–84.

    CAS  Article  Google Scholar 

  24. 24.

    Deligöz H, Tieke B. QCM-D study of layer-by-layer assembly of polyelectrolyte blend films and their drug loading-release behavior. Colloids Surf A Physicochem Eng Asp. 2014;441:725–36.

    Article  Google Scholar 

  25. 25.

    Gu Y, Weinheimer EK, Ji X, Wiener CG, Zacharia NS. Response of swelling behavior of weak branched poly(ethylene imine)/poly(acrylic acid) polyelectrolyte multilayers to thermal treatment. Langmuir. 2016;32(24):6020–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aurélien Renaudin and Valentin Philippe from Université de Lorraine for their help with CZE and HPLC and Bernard Senger from INSERM U1121 for his help with the interpretation of the QCM data. The authors also acknowledge “Region Grand Est” for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ariane Boudier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pallotta, A., Clarot, I., Beurton, J. et al. Analytical strategy for studying the formation and stability of multilayered films containing gold nanoparticles. Anal Bioanal Chem 413, 1473–1483 (2021). https://doi.org/10.1007/s00216-020-03113-6

Download citation

Keywords

  • Polyelectrolyte films
  • Gold nanoparticles
  • Film stability
  • Nanoparticle loading
  • Dynamic models
  • Physicochemical evaluation