Nuclear magnetic resonance immunoassay of tetanus antibodies based on the displacement of magnetic nanoparticles

Abstract

A nuclear magnetic resonance (NMR) immunoassay based on the application of carbon-coated iron nanoparticles conjugated with recognition molecules was designed. The principle of the assay is that ELISA plates are coated with a capture element, and then an analyte is added and detected by conjugating the magnetic nanoparticles with recognition molecules. Afterwards, the elution solution (0.1-M sodium hydroxide) is added to displace the magnetic nanoparticles from the well surfaces into the solution. The detached magnetic nanoparticles reduce transverse relaxation time (T2) values of protons from the surrounding solution. A portable NMR relaxometer is used to measure the T2. Magnetic nanoparticles conjugated with streptavidin, monoclonal antibodies, and protein G were applied for the detection of biotinylated albumin, prostate-specific antigen, and IgG specific to tetanus toxoid (TT). The limit of detection of anti-TT IgG was 0.08–0.12 mIU/mL. The reproducibility of the assay was within the acceptable range (CV < 7.4%). The key novelty of the immunoassay is that the displacement of the nanoparticles from the solid support by the elution solution allows the advantages of the solid phase assay to be combined with the sensitive detection of the T2 changes in a volume of liquid.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Alcantara D, Lopez S, García-Martin ML, Pozo D. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: current applications in nanomedicine. Nanomedicine. 2016;12:1253–62. https://doi.org/10.1016/j.nano.2016.01.005.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Kim J, Mohamed MAA, Zagorovsky K, Chan WCW. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials. 2017;146:97–114. https://doi.org/10.1016/j.biomaterials.2017.08.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Denmark DJ, Bustos-Perez X, Swain A, Phan MH, Mohapatra S, Mohapatra SS. Readiness of magnetic nanobiosensors for point-of-care commercialization. J Electron Mater. 2019;48:4749–61. https://doi.org/10.1007/s11664-019-07275-7.

    CAS  Article  Google Scholar 

  4. 4.

    Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, et al. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Anal Chem. 2019;114:151–70. https://doi.org/10.1016/j.trac.2019.03.004.

  5. 5.

    Knežević NŽ, Gadjanski I, Durand JO. Magnetic nanoarchitectures for cancer sensing, imaging and therapy. J Mater Chem B. 2019;7:9–23. https://doi.org/10.1039/c8tb02741b.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Nabaei V, Chandrawati R, Heidari H. Magnetic biosensors: modelling and simulation. Biosens Bioelectron. 2018;103:69–86. https://doi.org/10.1016/j.bios.2017.12.023.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta. 2019;202:96–110. https://doi.org/10.1016/j.talanta.2019.04.054.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Zhang Y, Yang H, Zhou Z, Huang K, Yang S, Han G. Recent advances on magnetic relaxation switching assay-based nanosensors. Bioconjug Chem. 2017;28:869–79. https://doi.org/10.1021/acs.bioconjchem.7b00059.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ullman E. Homogeneous immunoassays. In: Wild D, editor. The immunoassay handbook. Amsterdam: Elsevier Science; 2013. p. 67–87.

    Google Scholar 

  10. 10.

    Burtea C, Laurent S, Mahieu I, Larbanoix L, Roch A, Port M, et al. In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media Mol Imaging. 2011;6:236–50. https://doi.org/10.1002/cmmi.423.

  11. 11.

    Khramtsov P, Kropaneva M, Bochkova M, Timganova V, Zamorina S, Rayev M. Solid-phase nuclear magnetic resonance immunoassay for the prostate-specific antigen by using protein-coated magnetic nanoparticles. Microchim Acta. 2019;186:768. https://doi.org/10.1007/s00604-019-3925-4.

    CAS  Article  Google Scholar 

  12. 12.

    Khramtsov P, Barkina I, Kropaneva M, Bochkova M, Timganova V, Nechaev A, et al. Magnetic nanoclusters coated with albumin, casein, and gelatin: size tuning, relaxivity, stability, protein corona, and application in nuclear magnetic resonance immunoassay. Nanomaterials. 2019;9:1345. https://doi.org/10.3390/nano9091345.

  13. 13.

    Piletsky SS, Cass AEG, Piletska EV, Czulak J, Piletsky SA. A novel assay format as an alternative to ELISA: MINA test for biotin. ChemNanoMat. 2018;4:1214–22. https://doi.org/10.1002/cnma.201800393.

    CAS  Article  Google Scholar 

  14. 14.

    Mao X, Jiang J, Chen J, Huang Y, Shen G, Yu R. Cyclic accumulation of nanoparticles: a new strategy for electrochemical immunoassay based on the reversible reaction between dethiobiotin and avidin. Anal Chim Acta. 2006;557:159–63. https://doi.org/10.1016/j.aca.2005.09.078.

    CAS  Article  Google Scholar 

  15. 15.

    Glass JR, Dickerson JC, Schultz DA. Enzyme-mediated individual nanoparticle release assay. Anal Biochem. 2006;353:209–16. https://doi.org/10.1016/j.ab.2006.03.020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lin Y, Zhou Q, Lin Y, Tang D, Chen G, Tang D. Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosens Bioelectron. 2015;74:680–6. https://doi.org/10.1016/j.bios.2015.07.029.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Takae S, Akiyama Y, Yamasaki Y, Nagasaki Y, Kataoka K. Colloidal Au replacement assay for highly sensitive quantification of low molecular weight analytes by surface plasmon resonance. Bioconjug Chem. 2007;18:1241–5. https://doi.org/10.1021/bc0603541.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Halonen S, Kangas T, Haataja M, Lassi U. Urea-water-solution properties: density, viscosity, and surface tension in an under-saturated solution. Emiss Control Sci Technol. 2017;3:161–70. https://doi.org/10.1007/s40825-016-0051-1Y.K.

    CAS  Article  Google Scholar 

  19. 19.

    Agrawal YK, Sabbagh R, Sanders S, Nobes DS. Measuring the refractive index, density, viscosity, pH, and surface tension of potassium thiocyanate (KSCN) solutions for refractive index matching in flow experiments. J Chem Eng Data. 2018;63:1275–85. https://doi.org/10.1021/acs.jced.7b00904.

    CAS  Article  Google Scholar 

  20. 20.

    Warren JR, Gordon JA. On the refractive indices of aqueous solutions of urea. J Phys Chem. 1966;70:297–300. https://doi.org/10.1021/j100873a507.

    CAS  Article  Google Scholar 

  21. 21.

    Ayyar BV, Arora S, Murphy C, O'Kennedy R. Affinity chromatography as a tool for antibody purification. Methods. 2012;56:116–29. https://doi.org/10.1016/j.ymeth.2011.10.007.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Yan Z, Huang J. Chromatographic behavior of mouse serum immunoglobulin G in protein G perfusion affinity chromatography. Chromatogr B Biomed Sci Appl. 2000;738:149–54. https://doi.org/10.1016/S0378-4347(99)00507-1.

    CAS  Article  Google Scholar 

  23. 23.

    Acevedo B, Perera Y, Torres E, Pentón D, Ayala M, Gavilondo J. Fast and novel purification method to obtain the prostate specific antigen (PSA) from human seminal plasma. Prostate. 2006;66:1029–36. https://doi.org/10.1002/pros.20267.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Fahmi MZ, Ou K, Chen JK, Ho MH, Tzing SH, Chang JY. Development of bovine serum albumin-modified hybrid nanoclusters for magnetofluorescence imaging and drug delivery. RSC Adv. 2014;4:32762–72. https://doi.org/10.1039/c4ra05785f.

    CAS  Article  Google Scholar 

  25. 25.

    Strozyk MS, Chanana M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Protein/polymer-based dual-responsive gold nanoparticles with pH-dependent thermal sensitivity. Adv Funct Mater. 2012;22:1436–44. https://doi.org/10.1002/adfm.201102471.

    CAS  Article  Google Scholar 

  26. 26.

    Rybak JN, Scheurer SB, Neri D, Elia G. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics. 2004;4:2296–9. https://doi.org/10.1002/pmic.200300780.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Yen LM, Thwaites CL. Tetanus. Lancet. 2019;393:1657–68. https://doi.org/10.1016/S0140-6736(18)33131-3.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yilmaz A, Ulak FŞ, Batun MS. Proton T1 and T2 relaxivities of serum proteins. Magn Reson Imaging. 2004;22:683–8. https://doi.org/10.1016/j.mri.2004.02.001.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kristiansen M, Aggerbeck H, Heron I. Improved ELISA for determination of anti-diphtheria and/or anti-tetanus antitoxin antibodies in sera. APMIS. 1997;105:843–53.

    CAS  Article  Google Scholar 

  30. 30.

    van Gageldonk PGM, van Schaijk FG, van der Klis FR, Berbers GAM. Development and validation of a multiplex immunoassay for the simultaneous determination of serum antibodies to Bordetella pertussis, diphtheria and tetanus. J Immunol Methods. 2008;335:79–89. https://doi.org/10.1016/j.jim.2008.02.018.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Liu J, Wang J, Li Z, Meng H, Zhang L, Wang H, et al. A lateral flow assay for the determination of human tetanus antibody in whole blood by using gold nanoparticle labeled tetanus antigen. Microchim Acta. 2018;185:110. https://doi.org/10.1007/s00604-017-2657-6.

  32. 32.

    Raeisi S, Molaeirad A, Sadri M, Nejad HR. Detection of anti-tetanus toxoid monoclonal antibody by using modified polycarbonate surface. Plasmonics. 2018;13:1555–67. https://doi.org/10.1007/s11468-017-0664-4.

    CAS  Article  Google Scholar 

  33. 33.

    Jain S, Chattopadhyay S, Jackeray R, Zainul Abid CKV, Kumar M, Singh H. Detection of anti-tetanus toxoid antibody on modified polyacrylonitrile fibers. Talanta. 2010;82:1876–83. https://doi.org/10.1016/j.talanta.2010.08.003.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Golberg A, Yarmush ML, Konry T. Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta. 2013;180:855–60. https://doi.org/10.1007/s00604-013-0998-3.

    CAS  Article  Google Scholar 

  35. 35.

    Bioanalytical Method Validation. FDA. 2018. https://www.fda.gov/media/70858/download. Accessed 29 Oct 2019.

  36. 36.

    Reder S, Riffelmann M, Becker C, Wirsing von König CH. Measuring immunoglobulin G antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay. Clin Vaccine Immunol. 2008;15:744–9. https://doi.org/10.1128/CVI.00225-07.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Manghi MA, Pasetti MF, Brero ML, Deluchi S, di Paola G, Mathet V, et al. Development of an ELISA for measuring the activity of tetanus toxoid in vaccines and comparison with the toxin neutralization test in mice. J Immunol Methods. 1994;168:17–24. https://doi.org/10.1016/0022-1759(94)90204-6.

  38. 38.

    Ahnert-Hilger G, Bizzini B, Goretzki K, Müller H, Völckers C, Habermann E. Monoclonal antibodies against tetanus toxin and toxoid. Med Microbiol Immunol. 1983;172:123–35. https://doi.org/10.1007/BF02124513.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Volk WA, Bizzini B, Snyder RM, Bernhard E, Wagner RR. Neutralization of tetanus toxin by distinct monoclonal antibodies binding to multiple epitopes on the toxin molecule. Infect Immun. 1984;45:604–9. https://doi.org/10.1128/iai.45.3.604-609.1984.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kaittanis C, Santra S, Santiesteban OJ, Henderson TJ, Perez JM. The assembly state between magnetic nanosensors and their targets orchestrates their magnetic relaxation response. J Am Chem Soc. 2011;133:3668–76. https://doi.org/10.1021/ja1109584.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Blümich B. Low-field and benchtop NMR. J Magn Reson. 2019;306:27–35. https://doi.org/10.1016/j.jmr.2019.07.030.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Huber S, Min C, Staat C, Oh J, Castro CM, Haase A, et al. Multichannel digital heteronuclear magnetic resonance biosensor. Biosens Bioelectron. 2019;126:240–8. https://doi.org/10.1016/j.bios.2018.10.052.

Download references

Funding

This work was supported by the Russian Science Foundation (Grant No. 17-15-01116).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Khramtsov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Research was approved by the Review Board of the Institute of Ecology and Genetics of Microorganisms UB RAS (IRB00010009).

Informed consent

Written informed consent was obtained from volunteers.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khramtsov, P., Kropaneva, M., Bochkova, M. et al. Nuclear magnetic resonance immunoassay of tetanus antibodies based on the displacement of magnetic nanoparticles. Anal Bioanal Chem 413, 1461–1471 (2021). https://doi.org/10.1007/s00216-020-03112-7

Download citation

Keywords

  • Relaxometry
  • Elution
  • Assay
  • Magnetic nanoparticles