Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling

Abstract

The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.

Graphical abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    NIAID. Emerging infectious diseases/pathogens. In: Biodefense Emerg. Infect. Dis. National Institute of Allergy and Infectious Diseases; 2018. https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens. Accessed 10 Nov 2018.

  2. 2.

    Forni D, Cagliani R, Clerici M, Sironi M. Origin and dispersal of Hepatitis e virus. Emerg Microbes Infect. 2018;7:1–13.

    Google Scholar 

  3. 3.

    Pérez-Gracia MT, Suay B, Mateos-Lindemann ML. Hepatitis E: An emerging disease. Infect Genet Evol. 2014;22:40–59.

    PubMed  Google Scholar 

  4. 4.

    Van der Poel WHM. Food and environmental routes of Hepatitis E virus transmission. Curr Opin Virol. 2014;4:91–6.

    PubMed  Google Scholar 

  5. 5.

    Albinana-Gimenez N, Clemente-Casares P, Bofill-Mas S, Hundesa A, Ribas F, Girones R. Distribution of human polyoma- viruses, adenoviruses, and hepatitis E virus in the environment and in a drinking-water treatment plant. Environ Sci Technol. 2006;40:7416–22.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hewitt J, Harte D, Sutherland M, Croucher D, Fouche L, Flanagan P, et al. Prevalence of hepatitis E virus antibodies and infection in New Zealand blood donors. N Z Med J. 2018;131:38–43.

    PubMed  Google Scholar 

  7. 7.

    Dreier J, Knabbe C, Vollmer T. Transfusion-Transmitted Hepatitis E : NAT screening of blood donations and infectious dose. Front Med. 2018;5:5.

    Google Scholar 

  8. 8.

    Kenney SP, Meng X. Hepatitis E virus : animal models and zoonosis. Annu Rev Anim Biosci. 2019;7:427–48.

    PubMed  Google Scholar 

  9. 9.

    Meng X. Zoonotic and foodborne transmission of hepatitis E virus. Semin Liver Dis. 2013;33:41–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Sherman KE, Bisceglie AM Di, Mitty J. Hepatitis E virus infection. In: UpToDate. Wolters Kluwer; 2020. https://www.uptodate.com/contents/hepatitis-e-virus-infection. Accessed 15 Sep 2020.

  11. 11.

    Kamar N, Dalton HR, Abravanel F, Izopet J. Hepatitis E virus infection. Clin Microbiol Rev. 2014;27:116–38.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Purcell RH, Emerson SU. Hidden danger: the raw facts about hepatitis e virus. J Infect Dis. 2010;202:819–21.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccines Immunother. 2015;11:908–14.

    Google Scholar 

  14. 14.

    Zhu FC, Zhang J, Zhang XF, Zhou C, Wang ZZ, Huang SJ, et al. Efficacy and safety of a recombinant hepatitis e vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet. 2010;376:895–902.

    CAS  PubMed  Google Scholar 

  15. 15.

    FAO, WHO OIE. Report of the WHO/FAO/OIE joint consultation on emerging zoonotic diseases. Geneva: FAO, WHO, and OIE; 2004.

    Google Scholar 

  16. 16.

    Cao Y, Bing Z, Guan S, Zhang Z, Wang X. Development of new hepatitis E vaccines. Hum Vaccin Immunother. 2018;14:2254–62.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nan Y, Wu C, Zhao Q, Sun Y, Zhang YJ, Zhou EM. Vaccine development against zoonotic hepatitis E virus: open questions and remaining challenges. Front Microbiol. 2018;9:266.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    WHO. Hepatitis E. In: World Heal. Organ. 2018. http://www.who.int/news-room/fact-sheets/detail/hepatitis-e. Accessed 10 Oct 2018.

  19. 19.

    Shalimar ASK. Hepatitis E and acute liver failure in pregnancy. J Clin Exp Hepatol. 2013;3:213–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Bernal W, Wendon J. Acute Liver Failure. N Engl J Med. 2013;369:2525–34.

    CAS  PubMed  Google Scholar 

  21. 21.

    WHO. Regional strategy for the prevention and control of viral hepatitis. New Delhi: World Health Organization; 2013.

  22. 22.

    Komolmit P, Oranrap V, Suksawatamnuay S, Thanapirom K, Sriphoosanaphan S, Srisoonthorn N, et al. Clinical significance of post-liver transplant hepatitis E seropositivity in high prevalence area of hepatitis E genotype 3: a prospective study. Sci Rep. 2020;10:7352.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Payoong P, Prasoppokakorn T, Townamchai N, Jutivorakool K, Vanichanan J. Prevalence of hepatitis E virus infection among kidney transplant recipients in King Chulalongkorn Memorial Hospital, Thailand. Open Forum Infect Dis. 2017;4:S728.

    Google Scholar 

  24. 24.

    Intharasongkroh D, Thongmee T, Sa-nguanmoo P, Klinfueng S, Duang-in A, Wasitthankasem R, et al. Hepatitis E virus infection in Thai blood donors. Transfusion. 2018;59:1–9.

    Google Scholar 

  25. 25.

    Sa-nguanmoo P, Posuwan N, Vichaiwattana P, Wutthiratkowit N, Owatanapanich S, Wasitthankasem R, et al. Swine is a possible source of hepatitis E virus infection by comparative study of hepatitis a and E seroprevalence in Thailand. PLoS One. 2015;10:1–11.

    Google Scholar 

  26. 26.

    Hoofnagle JH, Nelson KE, Purcell RH, Zealand N. Hepatitis E. N Engl J Med. 2012;267:1237–44.

    Google Scholar 

  27. 27.

    Aggarwal R. Diagnosis of hepatitis E. Nat Rev Gastroenterol Hepatol. 2013;10:24–33.

    CAS  PubMed  Google Scholar 

  28. 28.

    Jothikumar N, Cromeans TL, Robertson BH, Meng XJ, Hill VR. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J ofVirological Methods. 2006;131:65–71.

    CAS  Google Scholar 

  29. 29.

    Inoue J, Takahashi M, Yazaki Y, Tsuda F, Okamoto H. Development and validation of an improved RT-PCR assay with nested universal primers for detection of hepatitis E virus strains with significant sequence divergence. J Virol Methods. 2006;137:325–33.

    CAS  PubMed  Google Scholar 

  30. 30.

    Dalton HR, Kamar N, Baylis SA, Moradpour D, Wedemeyer H, Negro F. EASL clinical practice guidelines on hepatitis E virus infection. J Hepatol. 2018;68:1256–71.

    Google Scholar 

  31. 31.

    MENON P, KAPILA K, OHRI V. Polymerase chain reaction and advances in infectious disease diagnosis. Med J Armed Forces India. 1999;55:229–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Relman DA. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin Infect Dis. 1999;29:475–86.

    PubMed  Google Scholar 

  33. 33.

    Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wu Q, Zhang Y, Yang Q, Yuan N, Zhang W. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors. 2019;19:4916.

    CAS  Google Scholar 

  35. 35.

    Wang J. Nanoparticle-based electrochemical DNA detection. Anal Chim Acta. 2003;500:247–57.

    CAS  Google Scholar 

  36. 36.

    Ferapontova EE. DNA electrochemistry and electrochemical sensors for nucleic acids. Annu Rev Anal Chem. 2018;11:197–218.

    CAS  Google Scholar 

  37. 37.

    Wei F, Lillehoj PB, Ho C. DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res. 2010;67:458–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens Bioelectron. 2017;100:89–95.

    PubMed  Google Scholar 

  39. 39.

    Xiang Q, Huang J, Huang H, Mao W, Ye Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018;8:1820–5.

    CAS  Google Scholar 

  40. 40.

    Srisomwat C, Teengam P, Chuaypen N, Tangkijvanich P, Vilaivan T, Chailapakul O. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sensors Actuators B Chem. 2020;316:128077.

    CAS  Google Scholar 

  41. 41.

    Khosravi-Nejad F, Teimouri M, Jafari Marandi S, Shariati M. The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires. Appl Phys A Mater Sci Process. 2019;125:1–8.

    CAS  Google Scholar 

  42. 42.

    Sharma A, Sharma N, Kumari A, Lee HJ, Kim TY, Tripathi KM. Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: a junction between material science and biology. Appl Mater Today. 2020;18:100467.

    Google Scholar 

  43. 43.

    Li X, Scida K, Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem. 2015;87:9009–15.

    CAS  PubMed  Google Scholar 

  44. 44.

    Liu S, Wu P, Li W, Zhang H, Cai C. Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification. Anal Chem. 2011;(83):4752–8.

  45. 45.

    Wang J, Liu G, Merkoi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125:3214–5.

    CAS  PubMed  Google Scholar 

  46. 46.

    Vijian D, Chinni SV, Yin LS, Lertanantawong B, Surareungchai W. Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens. Biosens Bioelectron. 2016;77:805–11.

    CAS  PubMed  Google Scholar 

  47. 47.

    Hansen JA, Mukhopadhyay R, Hansen JØ, Gothelf KV. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. J Am Chem Soc. 2006;128:3860–1.

    CAS  PubMed  Google Scholar 

  48. 48.

    Shipovskov S, Saunders AM, Nielsen JS, Hansen MH, Gothelfd KV, Ferapontova EE. Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis. Biosens Bioelectron. 2012;37:99–106.

    CAS  PubMed  Google Scholar 

  49. 49.

    Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C. 2013;33:1008–21.

    CAS  Google Scholar 

  50. 50.

    Blachowicz T, Ehrmann A. Recent developments of solar cells from PbS colloidal quantum dots. Appl Sci. 2020;10:1743.

    CAS  Google Scholar 

  51. 51.

    Harris RD, Bettis Homan S, Kodaimati M, He C, Nepomnyashchii AB, Swenson NK, et al. Electronic processes within quantum dot-molecule complexes. Chem Rev. 2016;116:12865–919.

    CAS  PubMed  Google Scholar 

  52. 52.

    Brittman S, Colbert AE, Brintlinger TH, Cunningham PD, Stewart MH, Heuer WB, et al. Effects of a lead chloride shell on lead sulfide quantum dots. J Phys Chem Lett. 2019;10:1914–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Kong Y, Chen J, Fang H, Heath G, Wo Y, Wang W, et al. Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem Mater. 2016;28:3041–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Vijaya Bharathi M, Maiti S, Sarkar B, Ghosh K, Paira P. Water-mediated green synthesis of Pbs quantum dot and its glutathione and biotin conjugates for non-invasive live cell imaging. R Soc Open Sci. 2018;5(3):171614.

  55. 55.

    Dong C, Liu S, Barange N, Lee J, Pardue T, Yi X, et al. Long-wavelength lead sulfide quantum dots sensing up to 2600 nm for short-wavelength infrared Photodetectors. ACS Appl Mater Interfaces. 2019;11:44451–7.

    CAS  PubMed  Google Scholar 

  56. 56.

    Hou B, Cho Y, Kim B-S, Ahn D, Lee S, Park JB, et al. Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications. J Mater Chem C. 2017;5:3692–8.

    CAS  Google Scholar 

  57. 57.

    Hosokawa H, Tamaki R, Sawada T, Okonogi A, Sato H, Ogomi Y, et al. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Nat Commun. 2019;10:4–6.

    Google Scholar 

  58. 58.

    Reinhart CC, Johansson E. Colloidally prepared 3-mercaptopropionic acid capped Lead sulfide quantum dots. Chem Mater. 2015;27:7313–20.

    CAS  Google Scholar 

  59. 59.

    Navaneethan M, Sabarinathan M, Harish S, Archana J, Nisha KD, Hayakawa Y, et al. Chemical synthesis and functional properties of multi-ligands passivated lead sulfide nanoparticles. Mater Lett. 2015;158:75–9.

    CAS  Google Scholar 

  60. 60.

    Nabiyouni G, Moghimi E, Hedayati K, Jalajerdi R. Room temperature synthesis of lead sulfide nanoparticles. Main Gr Met Chem. 2012;35:173–8.

    CAS  Google Scholar 

  61. 61.

    Bakueva L, Gorelikov I, Musikhin S, Zhao XS, Sargent EH, Kumacheva E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv Mater. 2004;16:926–9.

    CAS  Google Scholar 

  62. 62.

    Zhao X, Gorelikov I, Musikhin S, Cauchi S, Sukhovatkin V, Sargent EH, et al. Synthesis and optical properties of thiol-stabilized PbS nanocrystals. Langmuir. 2005;21:1086–90.

    CAS  PubMed  Google Scholar 

  63. 63.

    LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72:4847–54.

    CAS  Google Scholar 

  64. 64.

    Changotra H, Sehajpal PK. An improved method for the isolation of hepatitis B virus DNA from human serum. Indian J Virol. 2013;24:174–9.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lever MA, Torti A, Eickenbusch P, Michaud AB, Šantl-Temkiv T, Jørgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol. 2015;6:1–25.

    Google Scholar 

  66. 66.

    Borhade AV, Uphade BK. A comparative study on characterization and photocatalytic activities of Pbs and co doped Pbs nanoparticles. Chalcogenide Lett. 2012;9:299–306.

    CAS  Google Scholar 

  67. 67.

    Devamani RHP, Alagar M. Synthesis and characterization of Lead (II) hydroxide nanoparticles. Int J Appl Sci Eng Res. 2012;1:483–7.

    CAS  Google Scholar 

  68. 68.

    Tavakkoli Yaraki M, Tayebi M, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L. Synthesis and optical properties of cysteamine-capped ZnS quantum dots for aflatoxin quantification. J Alloys Compd. 2017;690:749–58.

    CAS  Google Scholar 

  69. 69.

    Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester: John Wiley and Sons; 2004.

    Google Scholar 

  70. 70.

    Agrawal Y, Patel V. Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;2:81.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Thomas A. Little. method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm Int. 2015;28:48–51.

    Google Scholar 

  72. 72.

    Tripathi KM, Sonker AK, Bhati A, Bhuyan J, Singh A, Singh A, et al. Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. New J Chem. 2016;40:1571–9.

    CAS  Google Scholar 

  73. 73.

    Emaus MN, Clark KD, Hinners P, Anderson JL. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal Bioanal Chem. 2018;410:4135–44.

    CAS  PubMed  Google Scholar 

  74. 74.

    Liu H-H, Cao X, Yang Y, Liu M-G, Wang Y-F. Array-based nano-amplification technique was applied in detection of hepatitis E virus. J Biochem Mol Biol. 2006;39:247–52.

    CAS  PubMed  Google Scholar 

  75. 75.

    Qamhieh K, Pettitt BM. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics. AIP Conf Proc. 2015. p. 020090. https://doi.org/10.1063/1.4914281.

  76. 76.

    Qiao W, Chiang H, Xie H, Levicky R. Surface vs. solution hybridization: effects of salt, temperature, and probe type. Chem Commun. 2015;51:17245–8.

    CAS  Google Scholar 

  77. 77.

    Liu B, Huang PJJ, Kelly EY, Liu J. Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnol J. 2016;11:780–7.

    CAS  PubMed  Google Scholar 

  78. 78.

    Aboudzadeh MA, Sanromán-Iglesias M, Lawrie CH, Grzelczak M, Liz-Marzán LM, Schäfer T. Blocking probe as a potential tool for detection of single nucleotide DNA mutations: design and performance. Nanoscale. 2017;9:16205–13.

    CAS  PubMed  Google Scholar 

  79. 79.

    Meng X, Halbur PG, Shapiro MAXS, Govindarajan S, Bruna JD, Mushahwar ISAK, et al. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol. 1998;72:9714–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Meng X-M, Purcell RH, Halbur PG, Lehman JR, Webb DM, Tsareva TS, et al. A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci. 1997;94:9860–5.

    CAS  PubMed  Google Scholar 

  81. 81.

    Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA Array detection with nanoparticle probes. Science. 2000;289:1757–60.

    CAS  PubMed  Google Scholar 

  82. 82.

    Zafrullah M, Zhang X, Tran C, Nguyen M, Kamili S, Purdy MA, et al. Disparities in detection of antibodies against hepatitis E virus in US blood donor samples using commercial assays Mohammad. Transfusion. 2018;58:1254–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Norder H, Galli C, Magnil E, Sikora P, Ekvärn E, Nyström K, et al. Hepatitis E virus genotype 3 genomes from RNA-positive but serologically negative plasma donors have CUG as the start codon for ORF3. Intervirology. 2018;61:53–63.

    Google Scholar 

Download references

Funding

This study was financially suported by the Petchra Pra Jom Klao Doctoral, KMUTT; the Thailand Research Fund (Grant number: RSA6080050); and the KMUTT 55th Anniversary Commemorative Fund.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Benchaporn Lertanantawong or Werasak Surareungchai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 604 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ngo, D.B., Chaibun, T., Yin, L.S. et al. Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling. Anal Bioanal Chem 413, 1027–1037 (2021). https://doi.org/10.1007/s00216-020-03061-1

Download citation

Keywords

  • PbS quantum dots
  • Functionalization
  • Electrochemical DNA sensor
  • HEV3