Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO2 flowers as electrode modifier

Abstract

The development of a cost-effective and highly sensitive hydrogen peroxide sensor is of great importance. Electrochemical sensing is considered the most sensitive technique for hydrogen peroxide detection. Herein, we reported a cost-effective and highly sensitive hydrogen peroxide sensor using Co-doped δ-MnO2 (Co@δ-MnO2) flower-modified screen-printed carbon electrode. The δ-MnO2 and Co@δ-MnO2 flowers were synthesized by employing a hydrothermal approach. Advanced techniques such as PXRD, SEM, FTIR, Raman, UV, EDX, BET, and TEM were utilized to confirm the formation of δ-MnO2 and Co-doped δ-MnO2 flowers. The fabricated sensor exhibited an excellent detection limit (0.12 μM) and sensitivity of 5.3 μAμM−1 cm−2.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Hazra S, Joshi H, Ghosh BK, Ahmed A, Gibson T, Millner P, et al. Development of a novel and efficient H2O2 sensor by simple modification of a screen printed Au electrode with Ru nanoparticle loaded functionalized mesoporous SBA15. RSC Adv. 2015;5:34390–7.

    CAS  Google Scholar 

  2. 2.

    Tsiafoulis CG, Trikalitis PN, Prodromidis MI. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem Commun. 2005;7:1398–404.

    CAS  Google Scholar 

  3. 3.

    Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev. 2014;43:744–64.

    CAS  PubMed  Google Scholar 

  4. 4.

    Laloi C, Apel K, Danon A. Reactive oxygen signalling: the latest news. C Opin Plant Biol. 2004;7:323–8.

    CAS  Google Scholar 

  5. 5.

    Chen W, Cai S, Ren Q, Wen W, Zhao Y. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137:49–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhang K, Mao L, Cai R. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta. 2000;51:179–86.

    CAS  PubMed  Google Scholar 

  7. 7.

    Chang Q, Deng K, Zhu L, Jiang G, Yu C, Tang H. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta. 2009;165:299.

    CAS  Google Scholar 

  8. 8.

    Schaferling M, Grogel DBM, Schreml S. Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta. 2011;174:1.

    Google Scholar 

  9. 9.

    Xuan J, Jiang L-P, Zhu J-J. Nonenzymatic hydrogen peroxide sensor based on three-dimensional ordered macroporous gold film modified electrode. C J Anal Chem. 2010;38:513–6.

    CAS  Google Scholar 

  10. 10.

    Hu X, Han H, Hua L, Sheng Z. Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide. Biosens Bioelectron. 2010;25:1843–6.

    CAS  PubMed  Google Scholar 

  11. 11.

    Ahmad K, Kumar P, Mobin SM. A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale Adv. 2020;2:502–11.

    CAS  Google Scholar 

  12. 12.

    Ahmad K, Mobin SM. High surface area 3D-MgO flowers as the modifier for the working electrode for efficient detection of 4-chlorophenol. Nanoscale Adv. 2019;1:719–27.

    CAS  Google Scholar 

  13. 13.

    Ahmad K, Kumar P, Mobin SM. Hydrothermally grown SnO2 flowers as efficient electrode modifier for simultaneous detection of catechol and hydroquinone. J Electrochem Soc. 2019;166:B1577–84.

    CAS  Google Scholar 

  14. 14.

    Ahmad K, Mohammad A, Mobin SM. Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim Acta. 2017;252:549–57.

    CAS  Google Scholar 

  15. 15.

    Ahmad K, Mohammad A, Mathur P, Mobin SM. Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta. 2016;15:435–46.

    Google Scholar 

  16. 16.

    Dang W, Sun Y, Jiao H, Xu L, Lin M. AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J Electroanal Chem. 2020;856:113592.

    CAS  Google Scholar 

  17. 17.

    Dong Y, Zheng J. Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem Eng J. 2020;392:123690.

    CAS  Google Scholar 

  18. 18.

    Cheng D, Wang T, Zhang G, Mei H. A novel nonenzymatic electrochemical sensor based on double-shelled CuCo2O4 hollow microspheres for glucose and H2O2. J Alloys Comp. 2020;819:153014.

    CAS  Google Scholar 

  19. 19.

    Uzunoglu A, Ipekci HH. The use of CeO2-modified Pt/C catalyst inks for the construction of high-performance enzyme-free H2O2 sensors. J Electroanal Chem. 2019;848:113302.

    CAS  Google Scholar 

  20. 20.

    Riaz MA, Yuan Z, Mahmood A, Liu F, Sui X, Chen J, et al. Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sens Actuators B Chem. 2020;319:128243.

    CAS  Google Scholar 

  21. 21.

    Xie F, Cao X, Qu F, Asiri AM, Sun X. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sens Actuators B Chem. 2018;255:1254–61.

    CAS  Google Scholar 

  22. 22.

    Chen X, Gao J, Zhao G, Wu C. In situ growth of FeOOH nanoparticles on physically-exfoliated graphene nanosheets as high performance H2O2 electrochemical sensor. Sens Actuators B Chem. 2020;313:128038.

    CAS  Google Scholar 

  23. 23.

    Yin D, Bo X, Liu J, Guo LA. novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles. Anal Chim Acta. 2018;1038:11–20.

    CAS  PubMed  Google Scholar 

  24. 24.

    Li S-J, Zhang J-C, Li J, Yang H-Y, Meng A-J, Zhang B. A 3D sandwich structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon nanotubes as high performance H2O2 sensors. Sens Actuators B Chem. 2018;260:1–11.

    CAS  Google Scholar 

  25. 25.

    Sheng Q, Shen Y, Zhang J, Zheng J. Ni doped Ag@C core–shell nanomaterials and their application in electrochemical H2O2 sensing. Anal Methods. 2017;9:163–9.

    CAS  Google Scholar 

  26. 26.

    Zhang M, Huang Z, Zhou G, Zhu L, Feng Y, Lin T, et al. A sensitive hydrogen peroxide sensor based on a three-dimensional N-doped carbon nanotube-hemin modified electrode. Anal Methods. 2015;7:8439–44.

    CAS  Google Scholar 

  27. 27.

    Manavalan S, Ganesamurthi J, Chen S-M, Veerakumar P, Murugan K. A robust Mn@FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide. Nanoscale. 2020;12:5961–72.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kannan P, Maiyalagan T, Pandikumar A, Guo L, Veerakumar P, Rameshkumar P. Highly sensitive enzyme-free amperometric sensing of hydrogen peroxide in real samples based on Co3O4 nanocolumn structure. Anal Methods. 2019;11:2292–302.

    CAS  Google Scholar 

  29. 29.

    Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N. Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys. 2016;18:16466–75.

    CAS  PubMed  Google Scholar 

  30. 30.

    Rajkumar C, Thirumalraj B, Chen S-M, Veerakumar P, Liu S-B. Ruthenium nanoparticles decorated tungsten oxide as a bifunctional catalyst for electrocatalytic and catalytic applications. ACS Appl Mater Interfaces. 2017;9:31794–805.

    CAS  PubMed  Google Scholar 

  31. 31.

    Tang C-L, Wei X, Jiang Y-M, Wu X-Y, Han L-N, Wang K-X, et al. Cobalt-doped MnO2 hierarchical yolk−shell spheres with improved supercapacitive performance. J Phys Chem C. 2015;119:8465–71.

    CAS  Google Scholar 

  32. 32.

    Xu B, Yu L, Sun M, Ye F, Zhong Y, Cheng G, et al. One-pot hydrothermal synthesis of novel 3D starfish-like δ-MnO2 nanosheets on carbon fiber paper for high-performance supercapacitors. RSC Adv. 2017;7:14910–6.

    CAS  Google Scholar 

  33. 33.

    Wang X, Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J. 2003;9:300–6.

    PubMed  Google Scholar 

  34. 34.

    Xiao W, Wang D, Lou XW. Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C. 2010;114:1694–700.

    CAS  Google Scholar 

  35. 35.

    Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C. 2008;112:5307–15.

    CAS  Google Scholar 

  36. 36.

    Chen H, Wang Y, Lv Y-K. Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Adv. 2016;6:54032–40.

    CAS  Google Scholar 

  37. 37.

    Liu H, Hu Z, Tian L, Su Y, Ruan H, Zhang L, et al. Reduced graphene oxide anchored with δ-MnO2 nanoscrolls as anode materials for enhanced Li-ion storage. Ceram Int. 2016;42:13519–24.

    CAS  Google Scholar 

  38. 38.

    Zhao H, Liu F, Han G, Liu Z, Liu B, Fu D, et al. Co-electrodeposition of MnO2/graphene oxide coating on carbon paper from phosphate buffer and the capacitive properties. J Solid State Electrochem. 2014;18:553–9.

    CAS  Google Scholar 

  39. 39.

    Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang L, et al. Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl Energy. 2014;134:439–45.

    CAS  Google Scholar 

  40. 40.

    Meher SK, Rao GR. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. J Power Sources. 2012;215:317–28.

    CAS  Google Scholar 

  41. 41.

    Zhu X, Xu H, Yao Y, Liu H, Wang J, Pu Y, et al. Effects of Ag0-modification and Fe3+-doping on the structural, optical and photocatalytic properties of TiO2. RSC Adv. 2019;9:40003–12.

    CAS  Google Scholar 

  42. 42.

    Majumder S, Saha B, Dey S, Mondal R, Kumar S, Banerjee S. A highly sensitive non-enzymatic hydrogen peroxide and hydrazine electrochemical sensor based on 3D micro-snowflake architectures of α-Fe2O3. RSC Adv. 2016;6:59907–18.

    CAS  Google Scholar 

  43. 43.

    Kumar S, Tsai C-H, Fu Y-P. A multifunctional Ni-doped iron pyrite/reduced graphene oxide composite as an efficient counter electrode for DSSCs and a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Trans. 2020;49:8516–27.

    CAS  PubMed  Google Scholar 

  44. 44.

    Chen YC, Shi JH, Hsu YK. Multifunctional FeS2 in binder-independent configuration as high-performance supercapacitor electrode and non-enzymatic H2O2 detector. Appl Surf Sci. 2020;503:144304.

    CAS  Google Scholar 

  45. 45.

    Li Y, Kamdem P, Jin X-J. In situ growth of chrysanthemum-like NiCo2S4 on MXene for high performance supercapacitors and non-enzymatic H2O2 sensor. Dalton Trans. 2020;49:7807–19.

    CAS  PubMed  Google Scholar 

  46. 46.

    Feng XM, Zhang Y, Song J, Chen NN, Zhou JH, Huang ZD, et al. MnO2/graphene nanocomposites for nonenzymatic electrochemical detection of hydrogen peroxide. Electroanalysis. 2015;27:353–9.

    CAS  Google Scholar 

  47. 47.

    Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sens. Actuators B Chem. 2014;201:526–34.

    CAS  Google Scholar 

  48. 48.

    Ramachandran K, Zahoor A, Kumar TR, Nahm KS, Balasubramani A, Kumar GG. MnO2 nanorods grown NGNF nanocomposites for the application of highly sensitive and selective electrochemical detection of hydrogen peroxide. J Ind Eng Chem. 2017;46:19–27.

    CAS  Google Scholar 

  49. 49.

    Bas SZ, Cummins C, Borah D, Ozmen M, Morris MA. Electrochemical sensing of hydrogen peroxide using block copolymer templated iron oxide nanopatterns. Anal Chem. 2018;90:1122–8.

    CAS  PubMed  Google Scholar 

  50. 50.

    Saada H, Abdallah R, Bergamini JF, Fryars S, Dorcet V, Joanny L, et al. Photoelectrochemical sensing of hydrogen peroxide on hematite. ChemElectroChem. 2020;7:1155–9.

    CAS  Google Scholar 

  51. 51.

    Ahmad K, Mobin SM. Shape controlled synthesis of high surface area MgO microstructures for highly efficient congo red dye removal and peroxide sensor. J Environ Chem Eng. 2019;7:103347.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge SIC and Discipline of Chemistry, IIT Indore, for research and characterization facilities. We acknowledge the Raman Spectrometer Facility under the FIST Project (SR/FST/PSI/225/2016) of the Discipline of Physics, IIT Indore, for Raman characterization. We would also like to acknowledge SAIF, IIT Bombay, for TEM facility.

Funding

S.M.M. acknowledged CSIR (01(2935)/18/EMR-II) and SERB-DST (EMR/2016/001113), New Delhi (India), for the financial support. K.A. thanks UGC, New Delhi (India) for research fellowship (RGNFD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaikh M. Mobin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection 2D Nanomaterials for Electroanalysis with guest editor Sabine Szunerits.

Electronic supplementary material

ESM 1

(PDF 1260 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Mobin, S.M. Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO2 flowers as electrode modifier. Anal Bioanal Chem 413, 789–798 (2021). https://doi.org/10.1007/s00216-020-02861-9

Download citation

Keywords

  • δ-MnO2 flowers
  • Co-doped δ-MnO2 flowers
  • Hydrogen peroxide sensor
  • Cyclic voltammetry
  • Linear sweep voltammetry