Skip to main content
Log in

A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) is a type of estrogenic mycotoxin commonly occurring in cereals. The aim of this study was to design a simple, rapid, inexpensive and ultrasensitive fluorescence assay for the determination of ZEN. Here, amino-modified mesoporous silica nanoparticles (MSNs-NH2) were synthesized to be the positive charge-rich reactor. A 6-carboxy-fluorescein-labeled aptamer (aptamer-FAM) was designed as the signal probe, ZEN-capture probe and negative charge reactor. In the absence of ZEN, the negatively charged aptamer-FAM combined with the positively charged MSNs-NH2 in an electrostatic manner. In the presence of ZEN, the fluorescence intensity in the supernatant increased significantly because the aptamer-FAM could bind to ZEN instead of MSNs-NH2. Under the optimal experimental conditions, this assay exhibited excellent specificity, repeatability and a wide linearity range of 0.005–150 ng/mL, with a detection limit of 0.012 ng/mL. Additionally, it showed high recovery (83.3–101.5%) for the spiked samples. There was no statistically significant difference in the ZEN concentrations detected by the proposed assay and HPLC in naturally contaminated samples. Overall, this design provides a new strategy for the rapid, inexpensive and sensitive detection of ZEN, and it could be applied to develop fluorometric assays for different targets by the selection of appropriate aptamers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pante GC, Silva MV, Romoli JCZ, Rocha GHO, Bando E, Nerilo SB et al. Occurrence of zearalenone in corn meal commercialized in south region of Brazil and daily intake estimates in the Brazilian population. J. Food Saf. 2019;39(5). https://doi.org/10.1111/jfs.12672.

  2. Meyer H, Skhosana ZD, Motlanthe M, Louw W, Rohwer E. Long term monitoring (2014–2018) of multi-mycotoxins in South African commercial maize and wheat with a locally developed and validated LC-MS/MS Method. Toxins. 2019;11(5). https://doi.org/10.3390/toxins11050271.

  3. Gruber-Dorninger C, Jenkins T, Schatzmayr G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins. 2019;11(7). https://doi.org/10.3390/toxins11070375.

  4. Tashiro F, Ueno Y. Mode of action and metabolism of zearalenone, an estrogenic myco-toxin. Journal of Pharmacobio-Dynamics. 1981;4(4).

  5. Rogowska A, Pomastowski P, Sagandykova G, Buszewski B. Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon. 2019;162:46–56. https://doi.org/10.1016/j.toxicon.2019.03.004.

    Article  CAS  PubMed  Google Scholar 

  6. Cai G, Pan S, Feng N, Zou H, Gu J, Yuan Y, et al. Zearalenone inhibits T cell chemotaxis by inhibiting cell adhesion and migration related proteins. Ecotox Environ Safe. 2019;175:263–71. https://doi.org/10.1016/j.ecoenv.2019.03.045.

    Article  CAS  Google Scholar 

  7. Gromadzka K, Waskiewicz A, Chelkowski J, Golinski P. Zearalenone and its metabolites: occurrence, detection, toxicity and guidelines. World Mycotoxin J. 2008;1(2):209–20. https://doi.org/10.3920/WMJ2008.x015.

    Article  CAS  Google Scholar 

  8. Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Appl Mater Interfaces. 2018;10(15):12504–9. https://doi.org/10.1021/acsami.8b02349.

    Article  CAS  PubMed  Google Scholar 

  9. Wu SJ, Liu LH, Duan N, Li Q, Zhou Y, Wang ZP. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem. 2018;66(8):1949–54. https://doi.org/10.1021/acs.jafc.7b05326.

    Article  CAS  PubMed  Google Scholar 

  10. Luo LJ, Ma S, Li LB, Liu XH, Zhang JY, Li X, et al. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem. 2019;292:98–105. https://doi.org/10.1016/j.foodchem.2019.04.050.

    Article  CAS  PubMed  Google Scholar 

  11. Guo ZM, Wang MM, Wu JZ, Tao FF, Chen QS, Wang QY, et al. Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Raman spectroscopy. Food Chem. 2019;286:282–8. https://doi.org/10.1016/j.foodchem.2019.02.020.

    Article  CAS  PubMed  Google Scholar 

  12. Tan H, Ma L, Guo T, Zhou H, Chen L, Zhang Y, et al. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Anal Chim Acta. 2019;1068:87–95. https://doi.org/10.1016/j.aca.2019.04.014.

    Article  CAS  PubMed  Google Scholar 

  13. Ma L, Guo T, Pan S, Zhang Y. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Microchim Acta. 2018;185(10):487. https://doi.org/10.1007/s00604-018-3023-z.

    Article  CAS  Google Scholar 

  14. Goud KY, Hayat A, Satyanarayana M, Kumar VS, Catanante G, Gobi KV, et al. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Microchim Acta. 2017;184(11):4401–8. https://doi.org/10.1007/s00604-017-2487-6.

    Article  CAS  Google Scholar 

  15. Jiang M, Chen C, He J, Zhang H, Xu Z. Fluorescence assay for three organophosphorus pesticides in agricultural products based on magnetic-assisted fluorescence labeling aptamer probe. Food Chem. 2020;307. https://doi.org/10.1016/j.foodchem.2019.125534.

  16. Chen Z, Tan Y, Xu K, Zhang L, Qiu B, Guo L, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens Bioelectron. 2016;75:8–14. https://doi.org/10.1016/j.bios.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Sun M, Luo F, Xu K, Lin Z, Zhang L. Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin. Talanta. 2018;178:563–8. https://doi.org/10.1016/j.talanta.2017.09.043.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Lu M, Zhu J, Tian S. Wrapping DNA-gated mesoporous silica nanoparticles for quantitative monitoring of telomerase activity with glucometer readout. J Mat Chem B. 2014;2(35):5847–53. https://doi.org/10.1039/c4tb00843j.

    Article  CAS  Google Scholar 

  19. Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, et al. A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta. 2018;1030:142–7. https://doi.org/10.1016/j.aca.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  20. Ribes A, Aznar E, Bernardos A, Marcos MD, Amoros P, Martinez-Manez R, et al. Fluorogenic sensing of carcinogenic bisphenol a using aptamer-capped mesoporous silica nanoparticles. Chem-Eur J. 2017;23(36):8581–4. https://doi.org/10.1002/chem.201701024.

    Article  CAS  PubMed  Google Scholar 

  21. Kankala RK, Zhang H, Liu CG, Kanubaddi KR, Lee CH, Wang SB et al. Metal species–encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs. Adv. Funct. Mater. 2019;29(43). https://doi.org/10.1002/adfm.201902652.

  22. Niazi S, Wang XL, Pasha I, Khan IM, Zhao S, Shoaib M, et al. A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF4: Ce/Tb nanoparticles as signal probe. Talanta. 2018;186:97–103. https://doi.org/10.1016/j.talanta.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  23. Karimi S, Heydari M. Voltammetric mixture analysis of tyrosine and tryptophan using carbon paste electrode modified by newly synthesized mesoporous silica nanoparticles and clustering of variable-partial least square: efficient strategy for template extraction in mesoporous silica nanoparticle synthesis. Sens. Actuator B-Chem. 2018;257:1134–42. https://doi.org/10.1016/j.snb.2017.11.014.

    Article  CAS  Google Scholar 

  24. Kenawy IMM, Abou El-Reash YG, Hassanien MM, Alnagar NR, Mortada WI. Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury. Microporous Mesoporous Mat. 2018;258:217–27. https://doi.org/10.1016/j.micromeso.2017.09.021.

    Article  CAS  Google Scholar 

  25. Ribes A, Santiago-Felipe S, Bernardos A, Marcos MD, Pardo T, Sancenon F, et al. Two new fluorogenic aptasensors based on capped mesoporous silica nanoparticles to detect ochratoxin a. ChemistryOpen. 2017;6(5):653–9. https://doi.org/10.1002/open.201700106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yokoi T, Kubota Y, Tatsumi T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl Catal A-Gen. 2012;421:14–37. https://doi.org/10.1016/j.apcata.2012.02.004.

    Article  CAS  Google Scholar 

  27. Zhang FY, Liu B, Liu GZ, Sheng W, Zhang Y, Liu Q, et al. Novel magnetic nanobeads-based fluoroimmunoassays for zearalenone detection in cereals using protein G as the recognition linker. Sens Actuator B-Chem. 2018;270:149–57. https://doi.org/10.1016/j.snb.2018.04.131.

    Article  CAS  Google Scholar 

  28. Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, et al. Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem. 2018;255:421–8. https://doi.org/10.1016/j.foodchem.2018.02.060.

    Article  CAS  PubMed  Google Scholar 

  29. Zhan SN, Huang XL, Chen R, Li J, Xiong YH. Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2-sensitive quantum dots for signal transduction. Talanta. 2016;158:51–6. https://doi.org/10.1016/j.talanta.2016.05.035.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Fu QQ, Xie J, Wang H, Tang Y. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone. Anal Bioanal Chem. 2019;411(10):2169–75. https://doi.org/10.1007/s00216-019-01652-1.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao F, Shen Q, Wang H, Han X, Yang Z. Development of a rapid magnetic bead-based immunoassay for sensitive detection of zearalenone. Food Control. 2017;79:227–33. https://doi.org/10.1016/j.foodcont.2017.03.051.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities of China (Project NO. XDJK2020B044) and Venture & Innovation Support Program for Chongqing Overseas Returnees (Project No. cx2018032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhao Zhang or Liang Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Guo, T., Zhou, H. et al. A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Anal Bioanal Chem 412, 5627–5635 (2020). https://doi.org/10.1007/s00216-020-02778-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02778-3

Keywords

Navigation