Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples

Abstract

Gas chromatography negative chemical ionization mass spectrometry (GC-NCI-MS) is a preferred instrumental approach for the trace and ultra-trace analysis of various toxic organics and their metabolites in human biological fluids. Specifically, the method has played an important role in the highly sensitive and specific quantitative detection of persistent highly halogenated compounds in environmental matrices and biota during the past few decades. However, for the analysis of toxic metabolites with active hydrogen atoms, such as acids, alcohols, and phenolic compounds, from biological matrixes or organics without electronegative atoms or groups, a derivatization step is often needed prior to GC analysis. Such derivatization aims to change the properties of targets to improve their separation, increase their volatility, and enhance the sensitivity of instrumental detection. This review summarizes three derivatization strategies commonly used for GC methods, i.e., alkylation, silylation, and acylation, together with their application combined with GC-NCI-MS for the high sensitivity analysis of toxic organic metabolites in the human body. The advantages and disadvantages of each derivatization method and potential directions for future applications are discussed. Given the broad variety of applications as well as the compound-specific sensitivity for the ultra-trace analysis of target xenobiotics in human biological fluids, subsequent studies are required to develop convenient, faster derivatization procedures and reagents better suited for routine analysis.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Yu Z, Zheng K, Ren G, Zheng Y, Ma S, Peng P, et al. Identification of hydroxylated octa- and nona-bromodiphenyl ethers in human serum from electronic waste dismantling workers. Environ Sci Technol. 2010;44:3979–85.

    CAS  PubMed  Google Scholar 

  2. 2.

    Ma S, Ren G, Zeng X, Yu Z, Sheng G, Fu J. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China. Environ Geochem Health. 2018;40:1931–40.

    CAS  PubMed  Google Scholar 

  3. 3.

    Grova N, Hardy EM, Faÿs F, Duca RC, Appenzeller BMR. Hair analysis for the biomonitoring of polycyclic aromatic hydrocarbon exposure: comparison with urinary metabolites and DNA adducts in a rat model. Arch Toxicol. 2018;92:3061–75.

    CAS  PubMed  Google Scholar 

  4. 4.

    Hilton DC, Trinidad DA, Hubbard K, Li Z, Sjödin A. Measurement of urinary benzo[a]pyrene tetrols and their relationship to other polycyclic aromatic hydrocarbon metabolites and cotinine in humans. Chemosphere. 2017;189:365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Wang Y, Liu S, Zhao H, Zhao G, Chen J, Zhai G, et al. Polybrominated diphenylethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs) in female serum from Dalian, China. Int J Hyg Environ Health. 2016;219:816–22.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hecht SS, Carmella SG, Villalta PW, Hochalter JB. Analysis of phenanthrene and benzo[a]pyrene tetraol enantiomers in human urine: relevance to the bay region diol epoxide hypothesis of benzo[a]pyrene carcinogenesis and to biomarker studies. Chem Res Toxicol. 2010;23:900–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Barbeau D, Lutier S, Choisnard L, Marques M, Persoons R, Maitre A. Urinary trans-anti-7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene as the most relevant biomarker for assessing carcinogenic polycyclic aromatic hydrocarbons exposure. Environ Int. 2018;112:147–55.

    CAS  PubMed  Google Scholar 

  8. 8.

    Butryn DM, Gross MS, Chi LH, Schecter A, Olson JR, Aga DS. “One-shot” analysis of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogs in human breast milk and serum using gas chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;892:140–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Provencher G, Bérubé R, Dumas P, Bienvenu JF, Gaudreau É, Bélanger P, et al. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2014;1348:97–104.

    CAS  PubMed  Google Scholar 

  10. 10.

    Tsikas D, Zoerner AA. Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J Chromatogr B. 2014;964:79–88.

    CAS  Google Scholar 

  11. 11.

    Dirtu AC, Roosens L, Geens T, Gheorghe A, Neels H, Covaci A. Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negative-ionization mass spectrometry. Anal Bioanal Chem. 2008;391:1175–81.

    CAS  PubMed  Google Scholar 

  12. 12.

    Lacorte S, Ikonomou MG. Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia. Chemosphere. 2009;74:412–20.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tsikas D. Pentafluorobenzyl bromide—a versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates. J Chromatogr B. 2017;1043:187–201.

    CAS  Google Scholar 

  14. 14.

    Gross JH. Chemical ionization. In: Mass spectrometry: a textbook. Springer International Publishing: Cham; 2017. p. 439–96.

    Google Scholar 

  15. 15.

    Athanasiadou M, Cuadra SN, Marsh G, Bergman Å, Jakobsson K. Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua. Environ Health Perspect. 2008;116:400–8.

    CAS  PubMed  Google Scholar 

  16. 16.

    Moldoveanu SC, David V. Derivatization methods in GC and GC/MS. In: Kusch P, editor. Gas chromatography - derivatization, sample preparation, application. IntechOpen; 2018. https://doi.org/10.5772/intechopen.81954.

  17. 17.

    Rohloff J. Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules. 2015;20:3431–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–28.

    CAS  PubMed  Google Scholar 

  19. 19.

    Grova N, Hardy EM, Meyer P, Appenzeller BMR. Analysis of tetrahydroxylated benzo[a]pyrene isomers in hair as biomarkers of exposure to benzo[a]pyrene. Anal Bioanal Chem. 2016;408:1997–2008.

    CAS  PubMed  Google Scholar 

  20. 20.

    Langlois I, Berger U, Zencak Z, Oehme M. Mass spectral studies of perfluorooctane sulfonate derivatives separated by high-resolution gas chromatography. Rapid Commun Mass Spectrom. 2007;21:3547–53.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zhai C, Peng S, Yang L, Wang Q. Evaluation of BDE-47 hydroxylation metabolic pathways based on a strong electron-withdrawing pentafluorobenzoyl derivatization gas chromatography/electron capture negative ionization quadrupole mass spectrometry. Environ Sci Technol. 2014;48:8117–26.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bowden JA, Ford DA. An examination of pentafluorobenzoyl derivatization strategies for the analysis of fatty alcohols using gas chromatography/electron capture negative ion chemical ionization–mass spectrometry. J Chromatogr B. 2011;879:1375–83.

    CAS  Google Scholar 

  23. 23.

    Winnberg U, Rydén A, Löfstrand K, Asplund L, Bignert A, Marsh G. Novel octabrominated phenolic diphenyl ether identified in blue mussels from the Swedish west coast. Environ Sci Technol. 2014;48:3319–26.

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography–negative chemical ionization–mass spectrometry. Sci Total Environ. 2009;407:962–74.

    CAS  PubMed  Google Scholar 

  25. 25.

    Geens T, Neels H, Covaci A. Sensitive and selective method for the determination of bisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC–ECNI/MS. J Chromatogr B. 2009;877:4042–6.

    CAS  Google Scholar 

  26. 26.

    Oglobline AN, Elimelakh H, Tattam B, Geyer R, O’Donnell GE, Holder G. Negative ion chemical ionization GC/MS-MS analysis of dialkylphosphate metabolites of organophosphate pesticides in urine of non-occupationally exposed subjects. Analyst. 2001;126:1037–41.

    CAS  PubMed  Google Scholar 

  27. 27.

    Schindler BK, Förster K, Angerer J. Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography–tandem mass spectrometry. J Chromatogr B. 2009;877:375–81.

    CAS  Google Scholar 

  28. 28.

    Grova N, Salquèbre G, Hardy EM, Schroeder H, Appenzeller BMR. Tetrahydroxylated-benzo[a]pyrene isomer analysis after hydrolysis of DNA-adducts isolated from rat and human white blood cells. J Chromatogr A. 2014;1364:183–91.

    CAS  PubMed  Google Scholar 

  29. 29.

    Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta. 2009;77:1473–82.

    CAS  PubMed  Google Scholar 

  30. 30.

    Xiao X, McCalley D. Quantitative analysis of estrogens in human urine using gas chromatography/negative chemical ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:1991–2001.

    CAS  PubMed  Google Scholar 

  31. 31.

    Choi MH, Chung BC, Lee W, Lee UC, Kim Y. Determination of anabolic steroids by gas chromatography/negative-ion chemical ionization mass spectrometry and gas chromatography/negative-ion chemical ionization tandem mass spectrometry with heptafluorobutyric anhydride derivatization. Rapid Commun Mass Spectrom. 1999;13:376–80.

    CAS  PubMed  Google Scholar 

  32. 32.

    Fiamegos YC, Stalikas CD. Gas chromatographic determination of amino acids via one-step phase-transfer catalytic pentafluorobenzylation–preconcentration. J Chromatogr A. 2006;1110:66–72.

    CAS  PubMed  Google Scholar 

  33. 33.

    Malmvärn A, Zebühr Y, Kautsky L, Bergman Å, Asplund L. Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere. 2008;72:910–6.

    PubMed  Google Scholar 

  34. 34.

    Fujii Y, Nishimura E, Kato Y, Harada KH, Koizumi A, Haraguchi K. Dietary exposure to phenolic and methoxylated organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan. Environ Int. 2014;63:19–25.

    CAS  PubMed  Google Scholar 

  35. 35.

    Gebbink WA, Sonne C, Dietz R, Kirkegaard M, Riget FF, Born EW, et al. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). EnvironPollut. 2008;152:621–9.

    CAS  Google Scholar 

  36. 36.

    Henderson WM, Weber EJ, Duirk SE, Washington JW, Smith MA. Quantification of fluorotelomer-based chemicals in mammalian matrices by monitoring perfluoroalkyl chain fragments with GC/MS. J Chromatogr B. 2007;846:155–61.

    CAS  Google Scholar 

  37. 37.

    Schoental R. Carcinogenic action of diazomethane and of nitroso-N-methyl urethane. Nature. 1960;188:420–1.

    CAS  PubMed  Google Scholar 

  38. 38.

    Mateo-Vivaracho L, Cacho J, Ferreira V. Quantitative determination of wine polyfunctional mercaptans at nanogram per liter level by gas chromatography–negative ion mass spectrometric analysis of their pentafluorobenzyl derivatives. J Chromatogr A. 2007;1146:242–50.

    CAS  PubMed  Google Scholar 

  39. 39.

    Tsikas D, Rothmann S, Schneider JY, Suchy M-T, Trettin A, Modun D, et al. Development, validation and biomedical applications of stable-isotope dilution GC–MS and GC–MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15(S)-8-iso-prostaglandin F2α and nitric oxide (NO). J Chromatogr B. 2016;1019:95–111.

    CAS  Google Scholar 

  40. 40.

    Brock JW, Yoshimura Y, Barr JR, Maggio VL, Graiser SR, Nakazawa H, et al. Measurement of bisphenol A levels in human urine. J Expo Sci Environ Epidemiol. 2001;11:323–8.

    CAS  Google Scholar 

  41. 41.

    Pagliano E, Campanella B, D'Ulivo A, Mester Z. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography - a review. Anal Chim Acta. 2018;1025:12–40.

    CAS  PubMed  Google Scholar 

  42. 42.

    Kage S, Kudo K, Ikeda N. Simultaneous determination of nitrate and nitrite in human plasma by gas chromatography-mass spectrometry. J Anal Toxicol. 2002;26:320–4.

    CAS  PubMed  Google Scholar 

  43. 43.

    Chen Z, Maartens F, Vega H, Kunene S, Gumede J, Krieger RI. 2,2-bis(4-chlorophenyl)acetic acid (DDA), a water-soluble urine biomarker of DDT metabolism in humans. Int J Toxicol. 2009;28:528–33.

    PubMed  Google Scholar 

  44. 44.

    Nakamura S, Takino M, Daishima S. Trace level determination of phenols as pentafluorobenzyl derivatives by gas chromatography–negative-ion chemical ionization mass spectrometry. Analyst. 2001;126:835–9.

    CAS  PubMed  Google Scholar 

  45. 45.

    Kuch HM, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC−(NCI)−MS in the picogram per liter range. Environ Sci Technol. 2001;35:3201–6.

    CAS  PubMed  Google Scholar 

  46. 46.

    Allmyr M, McLachlan MS, Sandborgh-Englund G, Adolfsson-Erici M. Determination of triclosan as its pentafluorobenzoyl ester in human plasma and milk using electron capture negative ionization mass spectrometry. Anal Chem. 2006;78:6542–6.

    CAS  PubMed  Google Scholar 

  47. 47.

    Bravo R, Caltabiano LM, Weerasekera G, Whitehead RD, Fernandez C, Needham LL, et al. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J Expo Sci Environ Epidemiol. 2004;14:249–59.

    CAS  Google Scholar 

  48. 48.

    Myers SR, Ali Y. Determination of tobacco specific hemoglobin adducts in smoking mothers and new born babies by mass spectrometry. Biomark Insights. 2007;2:269–82.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Fitzgerald RL, Rexin DA, Herold DA. Benzodiazepine analysis by negative chemical ionization gas chromatography/mass spectrometry. J Anal Toxicol. 1993;17:342–7.

    CAS  PubMed  Google Scholar 

  50. 50.

    Campbell JA, Timchalk C, Kousba AA, Wu H, Valenzuela BR, Hoppe EW. Negative ion chemical ionization mass spectrometry for the analysis of 3,5,6-trichloro-2-pyridinol in saliva of rats exposed to chlorpyrifos. Anal Lett. 2005;38:939–49.

    CAS  Google Scholar 

  51. 51.

    Boysen G, Hecht SS. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat Res Rev Mutat Res. 2003;543:17–30.

    CAS  Google Scholar 

  52. 52.

    Hecht SS, Chen M, Yagi H, Jerina DM, Carmella SG. r-1,t-2,3,c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene in human urine: a potential biomarker for assessing polycyclic aromatic hydrocarbon metabolic activation. Cancer Epidemiol Biomark Prev. 2003;12:1501–8.

    CAS  Google Scholar 

  53. 53.

    Zhong Y, Carmella SG, Hochalter JB, Balbo S, Hecht SS. Analysis of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene in human urine: a biomarker for directly assessing carcinogenic polycyclic aromatic hydrocarbon exposure plus metabolic activation. Chem Res Toxicol. 2011;24:73–80.

    CAS  PubMed  Google Scholar 

  54. 54.

    Simpson CD, Wu MT, Christiani DC, Santella RM, Carmella SG, Hecht SS. Determination of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene in human urine by gas chromatography/negative ion chemical ionization/mass spectrometry. Chem Res Toxicol. 2000;13:271–80.

    CAS  PubMed  Google Scholar 

  55. 55.

    Grova N, Antignac J-P, Hardy EM, Monteau F, Pouponneau K, Le Bizec B, et al. Identification of new tetrahydroxylated metabolites of polycyclic aromatic hydrocarbons in hair as biomarkers of exposure and signature of DNA adduct levels. Anal Chim Acta. 2017;995:65–76.

    CAS  PubMed  Google Scholar 

  56. 56.

    Simpson JT, Torok DS, Markey SP. Pentafluorobenzyl chloroformate derivatization for enhancement of detection of amino acids or alcohols by electron capture negative ion chemical ionization mass spectrometry. J Am Soc Mass Spectrom. 1995;6:525–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Wong J-M T, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016;1446:78–90.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Lerch O, Zinn P. Derivatisation and gas chromatography–chemical ionisation mass spectrometry of selected synthetic and natural endocrine disruptive chemicals. J Chromatogr A. 2003;991:77–97.

    CAS  PubMed  Google Scholar 

  59. 59.

    Silvério ACP, Machado SC, Boralli VB, Martins I. Dialkyl phosphates determination by gas chromatography: evaluation of a microwave-assisted derivatization. J Sep Sci. 2015;38:2664–9.

    PubMed  Google Scholar 

  60. 60.

    Zhao LJ, Ni Y, Su MM, Li HS, Dong FC, Chen WL, et al. High throughput and quantitative measurement of nicrobial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal Chem. 2017;89:5565–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Söderholm SL, Damm M, Kappe CO. Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Mol Divers. 2010;14:869–88.

    PubMed  Google Scholar 

  62. 62.

    Xu X, Zhao X, Zhang Y, Li D, Su R, Yang Q, et al. Microwave-accelerated derivatization prior to GC-MS determination of sex hormones. J Sep Sci. 2011;34:1455–62.

    CAS  PubMed  Google Scholar 

  63. 63.

    Bowden JA, Colosi DM, Stutts WL, Mora-Montero DC, Garrett TJ, Yost RA. Enhanced analysis of steroids by gas chromatography/mass spectrometry using microwave-accelerated derivatization. Anal Chem. 2009;81:6725–34.

    CAS  PubMed  Google Scholar 

  64. 64.

    Kieliba T, Lerch O, Andresen-Streichert H, Rothschild MA, Beike J. Simultaneous quantification of THC-COOH, OH-THC, and further cannabinoids in human hair by gas chromatography–tandem mass spectrometry with electron ionization applying automated sample preparation. Drug Test Anal. 2019;11:267–78.

    CAS  PubMed  Google Scholar 

  65. 65.

    Abbiss H, Rawlinson C, Maker GL, Trengove R. Assessment of automated trimethylsilyl derivatization protocols for GC-MS-based untargeted metabolomic analysis of urine. Metabolomics. 2015;11:1908–21.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (41991310, 41703092, and 41907299), Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program (2017BT01Z032).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shengtao Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Lin, M., Tang, J. et al. Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-02762-x

Download citation

Keywords

  • Negative chemical ionization
  • Derivatization
  • Alkylation
  • Silylation
  • Acylation
  • Metabolites