Ultrasensitive DNA biosensor for hepatitis B virus detection based on tin-doped WO3/In2O3 heterojunction nanowire photoelectrode under laser amplification


The fabrication of a highly sensitive DNA biosensor based on tin-doped WO3/In2O3 nanowires as heterojunction photoelectrode for detection of hepatitis B virus is reported. The tin-doped WO3/In2O3 nanowires were fabricated via a physical vapor deposition mechanism and were nearly 50 nm in width. The single-strand DNA probe was covalently immobilized on the nanowire surface. The biosensor could detect the hybridization of complementary DNA in a label-free approach at very low concentrations. The biodetection processes were conducted through reduction-oxidation reactions in the electrochemical impedance spectral measurements. The electrochemical impedance responses were biased under laser amplification to achieve the detection limit of 1 fM. The fabricated biosensor could detect DNA concentrations from 0.1 pM to 10 μM linearly in the calibration plot. Due to laser amplification, more charged carriers were released and they interacted with DNA on the electrode surface. The efficiency of the charge transfer parameter was enhanced by a photogeneration process, and the electron-hole recombination rate could intensively increase biosensor sensitivity, selectivity, and distinguishability. The stability of the nanowire biosensor under laser amplification demonstrated 96% of its initial responses after 6 weeks of maintenance.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–42.

    CAS  Article  Google Scholar 

  2. 2.

    Riahi R, Mach KE, Mohan R, Liao JC, Wong PK. Molecular detection of bacterial pathogens using microparticle enhanced double-stranded DNA probes. Anal Chem. 2011;83:6349–54.

    CAS  Article  Google Scholar 

  3. 3.

    Yang C, Denno ME, JillVenton PP. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta. 2015;887(5):17–37.

    CAS  Article  Google Scholar 

  4. 4.

    Negahdari B, Darvishi M, Asghar SA. Gold nanoparticles and hepatitis B virus. Artif Cells Nanomed Biotechnol. 2019;47:469–74.

    CAS  Article  Google Scholar 

  5. 5.

    Ju H, Zhao H. Electrochemical biosensors for DNA analysis. Front Biosci. 2005;10:37–46.

    CAS  Article  Google Scholar 

  6. 6.

    Wen JK, Zhang XE, Cheng Z, Liu H, Zhou YF, Zhang ZP, et al. A visual DNA chip for simultaneous detection of hepatitis B virus, hepatitis C virus and human immunodeficiency virus type-1. Biosens Bioelectron. 2004;19:685–92.

    CAS  Article  Google Scholar 

  7. 7.

    Escosura-Muiz A, Maltez-da Costa M, Sanchez-Espinel C, Diaaz-Freitas B, Fernandez-Suarez J, Gonzalez-Fernandez AF, et al. Gold nanoparticle-based electrochemical magneto immunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens Bioelectron. 2009;26:1710–4.

    Article  Google Scholar 

  8. 8.

    Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta. 2010;681:8–15.

    CAS  Article  Google Scholar 

  9. 9.

    Mahdavi M, Samaeian A, Hajmirzaheydarali M, Shahmohammadi M, Mohajerzadeh S, Malboobi MA. Label-free detection of DNA hybridization using a porous poly-Si ion-sensitive field effect transistor. RSC Adv. 2014;69:36854–63.

    Article  Google Scholar 

  10. 10.

    Mandong G, Yanqing L, Hongxia G, Xiaoqin W, Lifang F. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry. 2007;70:245–9.

    Article  Google Scholar 

  11. 11.

    Tsitsilonis OE, Thrasyvoulides A, Balafas A, Voutsas JF, Papamichail M, Lymberi P. Serological detection of hepatitis B viral infection by a panel of solid-phase enzyme-linked. J Pharm Biomed Anal. 2004;34(4):811–22.

    CAS  Article  Google Scholar 

  12. 12.

    Urrego LF, Lopez DI, Ramirez KA, Ramirez C, Osma JF. Biomicrosystem design and fabrication for the human papilloma virus 16 detection. Sensors Actuators B Chem. 2015;207:97–104.

    CAS  Article  Google Scholar 

  13. 13.

    Kang B, Yeo U, Yoo KH. Anodized aluminum oxide-based capacitance sensors for the direct detection of DNA hybridization. Biosens Bioelectron. 2010;25:1592–6.

    CAS  Article  Google Scholar 

  14. 14.

    Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ. Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:568–81.

    CAS  Article  Google Scholar 

  15. 15.

    Seidenstücker A, Beirle S, Enderle F, Ziemann P, Marti O, Plettl A. Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization. Beilstein J Nanotechnol. 2018;9:1390–8.

    Article  Google Scholar 

  16. 16.

    Escosura-Muniz A, Merkoci A. Nanochannels preparation and application in biosensing. ACS Nano. 2012;6:7556–83.

    Article  Google Scholar 

  17. 17.

    Stroeve P, Ileri N. Biotechnical and other applications of nanoporous membranes. Trends Biotechnol. 2011;29:259–66.

    CAS  Article  Google Scholar 

  18. 18.

    Juhasz L, Mizsei J. Humidity sensor structures with thin film porous aluminafor on-chip integration. Thin Solid Films. 2009;517:6198–201.

    CAS  Article  Google Scholar 

  19. 19.

    Steinmetz M, Lima D, Gonçalves A, Sérgio V, Fujiwara T, Andrade Pessôa C, et al. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika virus detection. Biosens Bioelectron. 2019;141:111351.

    CAS  Article  Google Scholar 

  20. 20.

    Ye WW, Shi JY, Chan CY, Zhang Y, Yang M. A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification. Sensors Actuators B Chem. 2014;31:877–82.

    Article  Google Scholar 

  21. 21.

    Said S, Mikhail S, Riad M. Recent progress in preparations and applications of meso-porous alumina. Mater Sci Energy Technol. 2019;2:288–97.

    Google Scholar 

  22. 22.

    Zhang J, Ma H, Liu Z. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl Catal B Environ. 2017;201:84–91.

    CAS  Article  Google Scholar 

  23. 23.

    Shariati M. The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties. Appl Phys A. 2015;118:997–1007.

    CAS  Article  Google Scholar 

  24. 24.

    Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc. 2006;128:16323–31.

    CAS  Article  Google Scholar 

  25. 25.

    Shariati M. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology. Biosens Bioelectron. 2018;105:58–64.

    CAS  Article  Google Scholar 

  26. 26.

    Takmakov P, Vlassiouk I, Smirnov S. Hydrothermally shrunk alumina nanopores and their application to DNA sensing. Analyst. 2006;131:1248–53.

    CAS  Article  Google Scholar 

  27. 27.

    Zhang G, Chua J, Chee R, Agarwal A, Wong S, Buddharaju K, et al. Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosens Bioelectron. 2009;23:1701–7.

    Article  Google Scholar 

  28. 28.

    Tran TT, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Anal Chem. 2016;79:222–32.

    CAS  Article  Google Scholar 

  29. 29.

    Ahangar LE, Mehrgardi MA. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochemistry. 2017;117:83–8.

    CAS  Article  Google Scholar 

  30. 30.

    Li H, Sun Z, Zhong W, Hao N, Xu D, Chen HY. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem. 2010;82:5477–83.

    CAS  Article  Google Scholar 

  31. 31.

    Xuan C, Thuy NT, Luyen TT, Huyen TT, Tuan MA. Carbon nanotube field-effect transistor for DNA sensing. J Electron Mater. 2017;46:3507–11.

    CAS  Article  Google Scholar 

  32. 32.

    Paraskevis D, Haida C, Tassopoulos N, Raptopoulou M, Tsantoulas D, Papachristou H, et al. Development and assessment of a novel real-time PCR assay for quantitation of HBV DNA. J Virol Methods. 2002;103:201–12.

    CAS  Article  Google Scholar 

  33. 33.

    Kannan P, Subramanian P, Maiyalagan T, Jiang Z. Cobalt oxide porous nanocubes-based electrochemical immunobiosensing of hepatitis B virus DNA in blood serum and urine samples. Anal Chem. 2019;91:5824–33.

    CAS  Article  Google Scholar 

  34. 34.

    Chen CC, Lai ZL, Wang GJ, Wu CY. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens Bioelectron. 2016;15(77):603–8.

    Article  Google Scholar 

  35. 35.

    Cai T, Lou GQ, Jin Y, Dai X, Meng ZH. Development and evaluation of real-time loop-mediated isothermal amplification for hepatitis B virus DNA quantification: a new tool for HBV management. J Clin Virol. 2008;4:270–6.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohsen Shariati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 627 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shariati, M., Sadeghi, M. Ultrasensitive DNA biosensor for hepatitis B virus detection based on tin-doped WO3/In2O3 heterojunction nanowire photoelectrode under laser amplification. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-02752-z

Download citation


  • Label-free DNA biosensor
  • Hepatitis B virus
  • WO3/ITO nanowires
  • Laser amplification
  • Electrochemical impedance