Unambiguous determination of farnesol and tyrosol in vaginal fluid using fast and sensitive UHPLC-MS/MS method

Abstract

The new ultra-high performance liquid chromatography method with tandem mass spectrometry detection (UHPLC-MS/MS) has been optimized to allow fast, selective, and high-throughput analysis of two Candida albicans quorum sensing molecules (QSM), farnesol and tyrosol. The problem of the presence of the interference in the samples and system was successfully solved by careful optimization of chromatographic conditions. Charged hybrid stationary phase modified with pentafluorophenyl group and optimized gradient elution provided adequate separation selectivity and peak shapes. The impurity was identified as dibutyl phthalate and had the same m/z ions as farnesol leading to an important interference on selected reaction monitoring channel. Two different types of biological matrices originating from vaginal fluid, supernatant and sediment, were analysed. Micro-solid phase extraction in pipette tips was optimized for the selective isolation of QSM from the supernatant. The insufficient retention of farnesol on the extraction sorbent was improved when 1% of organic solvent was added prior to extraction, while the retention of tyrosol was only possible when using combined C8 and polymer sorbent type. Strong retention of farnesol had to be solved by increasing elution solvent strength and volume up to 600 μL. However, this approach did not allow the pretreatment of sediment samples due to the sorbent clogging. Therefore, our previously developed protein precipitation method was modified and validated to analyse the sediments. New developed UHPLC-MS/MS method provided suitable accuracy and precision for the determination of QSM in vaginal fluid while using only 50 μL sample volume and two different sample preparation methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lagunes L, Rello J. Invasive candidiasis: from mycobiome to infection, therapy, and prevention. Eur J Clin Microbiol Infect Dis. 2016;35(8):1221–6. https://doi.org/10.1007/s10096-016-2658-0.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009;52(3):197–205. https://doi.org/10.1111/j.1439-0507.2009.01691.x.

    Article  PubMed  Google Scholar 

  3. 3.

    Lim CS, Rosli R, Seow HF, Chong PP. Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis. 2012;31(1):21–31. https://doi.org/10.1007/s10096-011-1273-3.

    Article  PubMed  Google Scholar 

  4. 4.

    Evans SE. Coping with Candida infections. Proc Am Thorac Soc. 2010;7(3):197–203. https://doi.org/10.1513/pats.200907-075AL.

    Article  PubMed  Google Scholar 

  5. 5.

    Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 2014;10:95–105. https://doi.org/10.2147/TCRM.S40160.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Colombo AL, Junior JNA, Guinea J. Emerging multidrug-resistant Candida species. Curr Opin Infect Dis. 2017;30(6):528–38. https://doi.org/10.1097/QCO.0000000000000411.

    Article  PubMed  Google Scholar 

  7. 7.

    Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2017;168(9–10):802–10. https://doi.org/10.1016/j.resmic.2017.02.005.

    Article  PubMed  Google Scholar 

  8. 8.

    Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214(1):15–21. https://doi.org/10.1016/j.ajog.2015.06.067.

    Article  PubMed  Google Scholar 

  9. 9.

    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961–71. https://doi.org/10.1016/s0140-6736(07)60917-9.

    Article  PubMed  Google Scholar 

  10. 10.

    Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011;49(2):171–7. https://doi.org/10.1007/s12275-011-1064-7.

    Article  PubMed  Google Scholar 

  11. 11.

    Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, et al. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology. 2011;157(Pt 8):2297–307. https://doi.org/10.1099/mic.0.049395-0.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Han TL, Cannon RD, Villas-Boas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 2011;48(8):747–63. https://doi.org/10.1016/j.fgb.2011.04.002.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Nickerson KW, Atkin AL, Hornby JM. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 2006;72(6):3805–13. https://doi.org/10.1128/AEM.02765-05.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Alem MA, Oteef MD, Flowers TH, Douglas LJ. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell. 2006;5(10):1770–9. https://doi.org/10.1128/EC.00219-06.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Johansen P, Jespersen L. Impact of quorum sensing on the quality of fermented foods. Curr Opin Food Sci. 2017;13:16–25. https://doi.org/10.1016/j.cofs.2017.01.001.

    Article  Google Scholar 

  16. 16.

    Zhao X, Liu X, Xu X, Fu YV. Microbe social skill: the cell-to-cell communication between microorganisms. Sci Bull. 2017;62(7):516–24. https://doi.org/10.1016/j.scib.2017.02.010.

    CAS  Article  Google Scholar 

  17. 17.

    Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A. 2004;101:5048–52.

    CAS  Article  Google Scholar 

  18. 18.

    scifinder.com, available online 20th March 2018.

  19. 19.

    Villa C, Gambaro R, Mariani E, Dorato S. High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal. 2007;44(3):755–62. https://doi.org/10.1016/j.jpba.2007.03.020.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Teshima K, Kondo T. Analytical method for determination of allylic isoprenols in rat tissues by liquid chromatography/tandem mass spectrometry following chemical derivatization with 3-nitrophtalic anhydride. J Pharm Biomed Anal. 2008;47(3):560–6. https://doi.org/10.1016/j.jpba.2008.01.032.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Rodriguez S, Kirby J, Denby CM, Keasling JD. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protoc. 2014;9(8):1980–96. https://doi.org/10.1038/nprot.2014.132.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Ha J, Wang Y, Jang H, Seog H, Chen X. Determination of E,E-farnesol in Makgeolli (rice wine) using dynamic headspace sampling and stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. Food Chem. 2014;142:79–86. https://doi.org/10.1016/j.foodchem.2013.07.038.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Debonneville C, Chaintreau A. Online clean-up of volatile compounds in complex matrices for GC-MS quantification: testing with fragranced consumer products. Flavour Fragr J. 2014;29(5):267–76. https://doi.org/10.1002/ffj.3198.

    CAS  Article  Google Scholar 

  24. 24.

    Celeiro M, Guerra E, Lamas JP, Lores M, Garcia-Jares C, Llompart M. Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. J Chromatogr A. 2014;1344:1–14. https://doi.org/10.1016/j.chroma.2014.03.070.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Li J, Liu X, Dong F, Xu J, Zheng Y, Shan W. Determination of the volatile composition in essential oil of Descurainia sophia (L.) Webb ex Prantl (Flixweed) by gas chromatography/mass spectrometry (GC/MS). Molecules. 2010;15(1):233–40. https://doi.org/10.3390/molecules15010233.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Madrera RR, Valles BS. Determination of volatile compounds in apple pomace by stir bar sorptive extraction and gas chromatography-mass spectrometry (SBSE-GC-MS). J Food Sci. 2011;76(9):C1326–34. https://doi.org/10.1111/j.1750-3841.2011.02406.x.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Mao Y, Li Y, Yao N. Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. J Pharm Biomed Anal. 2007;45(3):510–5. https://doi.org/10.1016/j.jpba.2007.05.031.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    de la Torre-Carbot K, Chavez-Servin JL, Jauregui O, Castellote AI, Lamuela-Raventos RM, Fito M, et al. Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: determination by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chim Acta. 2007;583(2):402–10. https://doi.org/10.1016/j.aca.2006.10.029.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bazoti FN, Gikas E, Skaltsounis AL, Tsarbopoulos A. Development of a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) method for the quantification of bioactive substances present in olive oil mill wastewaters. Anal Chim Acta. 2006;573-574:258–66. https://doi.org/10.1016/j.aca.2006.03.075.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Miro-Casas E, Farre Albaladejo M, Covas MI, Rodriguez JO, Menoyo Colomer E, Lamuela Raventos RM, et al. Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Anal Biochem. 2001;294(1):63–72. https://doi.org/10.1006/abio.2001.5160.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ha J, Shim Y-S, Cho Y, Seo D, Jang H, Jang H. Analysis of E,E-farnesol and squalene in makgeolli using stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. Anal Sci Technol. 2014;27(1):60–5. https://doi.org/10.5806/ast.2014.27.1.60.

    Article  Google Scholar 

  32. 32.

    Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol. 2008;74(23):7211–8. https://doi.org/10.1128/AEM.01614-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gregus P, Vlckova H, Buchta V, Kestranek J, Krivcikova L, Novakova L. Ultra high performance liquid chromatography tandem mass spectrometry analysis of quorum-sensing molecules of Candida albicans. J Pharm Biomed Anal. 2010;53(3):674–81. https://doi.org/10.1016/j.jpba.2010.05.029.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Vlckova H, Pilarova V, Novak O, Solich P, Novakova L. Micro-SPE in pipette tips as a tool for analysis of small-molecule drugs in serum. Bioanalysis. 2017;9(11):887–901. https://doi.org/10.4155/bio-2017-0033.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Svacinova J, Novak O, Plačková L, Lenobel R, Holík J, Strnad M, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8:17–30. https://doi.org/10.1186/1746-4811-8-17.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    European Medicine Agency, Guideline on bioanalytical method validation. 2011.

  37. 37.

    Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30.

    CAS  Article  Google Scholar 

  38. 38.

    http://www.waters.com/webassets/cms/library/docs/720002488en.pdf, available online 12th July 2017.

Download references

Availability of data and material (data transparency)

All data associated to this study is available from the authors upon reasonable request.

Funding

The authors received the financial support of the STARSS project (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000465) co-funded by ERDF and the project nr. 15-29225A, supported by Ministry of Health of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucie Nováková.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

The study design was approved by the Ethics Committee of Faculty of Medicine, University Hospital (July 17, 2014; no. 201408 S35).

Consent to participate and for publication

All authors gave the consents to participate and for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Electronic supplementary material

ESM 1

(PDF 2.06 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pilařová, V., Kočová Vlčková, H., Jung, O. et al. Unambiguous determination of farnesol and tyrosol in vaginal fluid using fast and sensitive UHPLC-MS/MS method. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-02699-1

Download citation

Keywords

  • Farnesol
  • Tyrosol
  • Quorum sensing
  • Candida albicans
  • Microextraction
  • UHPLC-MS/MS