Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)—a practical overview

Abstract

The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Barceló D, Emerging Organic Contaminants and Human Health. The handbook of environmental chemistry. 20th ed. Verlag Berlin Heidelberg: Springer; 2012.

    Google Scholar 

  2. 2.

    Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. https://doi.org/10.1016/j.watres.2014.08.053.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Naidu R, Arias Espana VA, Liu Y, Jit J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere. 2016;154:350–7. https://doi.org/10.1016/j.chemosphere.2016.03.068.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Pharmaceuticals, Personal Care Products and Endocrine Disrupting Compounds [database on the Internet]. Water Quality Association. 2014. Available from: https://www.wqa.org/Learn-About-Water/Contaminants-of-Emerging-Concern/Pharmaceuticals-Personal-Care-Products-and-Endocrine-Disrupting-Compounds. Accessed:

  5. 5.

    Estévez MC, Font H, Nichkova M, Salvador JP, Varela B, Sánchez-Baeza F, et al. Immunochemical Determination of Industrial Emerging Pollutants. In: In: The Handbook of Environmental Chemistry. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2005;2:119–80. p. 119–80. https://doi.org/10.1007/b98609.

    Google Scholar 

  6. 6.

    Calisto V, Esteves VI. Psychiatric pharmaceuticals in the environment. Chemosphere. 2009;77(10):1257–74. https://doi.org/10.1016/j.chemosphere.2009.09.021.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Guo F, Liu Q, Qu GB, Song SJ, Sun JT, Shi JB, et al. Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2013;1281:9–18. https://doi.org/10.1016/j.chroma.2013.01.044.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Lima DL, Silva CP, Otero M, Esteves VI. Low cost methodology for estrogens monitoring in water samples using dispersive liquid-liquid microextraction and HPLC with fluorescence detection. Talanta. 2013;115:980–5. https://doi.org/10.1016/j.talanta.2013.07.007.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yang Y, Ok YS, Kim K-H, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ. 2017:596–7:303–20. https://doi.org/10.1016/j.scitotenv.2017.04.102.

  10. 10.

    Sehonova P, Svobodova Z, Dolezelova P, Vosmerova P, Faggio C. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. Sci Total Environ. 2018:631–2:789–94. https://doi.org/10.1016/j.scitotenv.2018.03.076.

  11. 11.

    Richmond EK, Grace MR, Kelly JJ, Reisinger AJ, Rosi EJ, Walters DM. Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elem Sci Anth. 2017;5(66):1–8. https://doi.org/10.1525/journal.elementa.252.

    Article  Google Scholar 

  12. 12.

    Ebele AJ, Abou-Elwafa Abdallah M, Harrad S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants. 2017;3(1):1–16. https://doi.org/10.1016/j.emcon.2016.12.004.

    Article  Google Scholar 

  13. 13.

    Courtier A, Cadiere A, Roig B. Human pharmaceuticals: why and how to reduce their presence in the environment. Curr Opin Green Sustain Chem. 2019;15:77–82. https://doi.org/10.1016/j.cogsc.2018.11.001.

    Article  Google Scholar 

  14. 14.

    Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ. 2019;654:324–37. https://doi.org/10.1016/j.scitotenv.2018.11.072.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater. 2018;344:146–62. https://doi.org/10.1016/j.jhazmat.2017.09.058.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut. 2014;187:193–201. https://doi.org/10.1016/j.envpol.2014.01.015.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Koopaei NN, Abdollahi M. Health risks associated with the pharmaceuticals in wastewater. Daru. 2017;25(1):9. https://doi.org/10.1186/s40199-017-0176-y.

    CAS  Article  Google Scholar 

  18. 18.

    Szymonik A, Lach J, Malińska K. Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecol Chem Eng S. 2017;24(1):65–85. https://doi.org/10.1515/eces-2017-0006.

    CAS  Article  Google Scholar 

  19. 19.

    de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res. 2018;57(9):3103–27. https://doi.org/10.1021/acs.iecr.7b05137.

    CAS  Article  Google Scholar 

  20. 20.

    Huerta B, Rodriguez-Mozaz S, Lazorchak J, Barcelo D, Batt A, Wathen J, et al. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008-2009 National Rivers and streams assessment. Sci Total Environ. 2018;634:542–9. https://doi.org/10.1016/j.scitotenv.2018.03.387.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mackuľak T, Černanský S, Fehér M, Birošová L, Gál M. Pharmaceuticals, drugs, and resistant microorganisms — environmental impact on population health. Curr Opin Environl Sci Health. 2019;9:40–8. https://doi.org/10.1016/j.coesh.2019.04.002.

    Article  Google Scholar 

  22. 22.

    Silva CPG. Occurrence and fate of estrogens and antibiotics in the environment evaluated by low-cost analytical methodologies: University of Aveiro; 2014 (http://hdl.handle.net/10773/14131).

  23. 23.

    Buchberger WW. Novel analytical procedures for screening of drug residues in water, waste water, sediment and sludge. Anal Chim Acta. 2007;593(2):129–39. https://doi.org/10.1016/j.aca.2007.05.006.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Fatta D, Achilleos A, Nikolaou A, Meriç S. Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC-Trend Anal Chem. 2007;26(6):515–33. https://doi.org/10.1016/j.trac.2007.02.001.

    CAS  Article  Google Scholar 

  25. 25.

    Bialk-Bielinska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, et al. Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal. 2016;121:271–96. https://doi.org/10.1016/j.jpba.2016.01.016.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Caldas SS, Rombaldi C, Arias JL, Marube LC, Primel EG. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta. 2016;146:676–88. https://doi.org/10.1016/j.talanta.2015.06.047.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Togola A, Budzinski H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A. 2008;1177(1):150–8. https://doi.org/10.1016/j.chroma.2007.10.105.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M. Identification of estrogenic chemicals in STW effluent. 1.Chemical fractionation and in vitro biological screening. Environ Sci Technol. 1998;32(11):1549–58.

    CAS  Article  Google Scholar 

  29. 29.

    Petrović M, Hernando MD, Díaz-Cruz MS, Barceló D. Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. J Chromatogr A. 2005;1067(1–2):1–14. https://doi.org/10.1016/j.chroma.2004.10.110.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Petrovic M, Farre M, de Alda ML, Perez S, Postigo C, Kock M, et al. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. J Chromatogr A. 2010;1217(25):4004–17. https://doi.org/10.1016/j.chroma.2010.02.059.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Perez-Fernandez V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta. 2017;983:9–41. https://doi.org/10.1016/j.aca.2017.06.029.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Lorenzo M, Campo J, Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC-Trend Anal Chem. 2018;103:137–55. https://doi.org/10.1016/j.trac.2018.04.003.

    CAS  Article  Google Scholar 

  33. 33.

    Goel P. Immunodiagnosis of pesticides: a review. Afr J Biotechnol. 2013;12(52):7158–67. https://doi.org/10.5897/AJBX2013.13478.

    CAS  Article  Google Scholar 

  34. 34.

    Botchkareva AE, Eremin SA, Montoya A, Manclús JJ, Mickova B, Rauch P, et al. Development of chemiluminescent ELISAs to DDT and its metabolites in food and environmental samples. J Immunol Methods. 2003;283(1–2):45–57. https://doi.org/10.1016/j.jim.2003.08.016.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Pugajeva I, Rusko J, Perkons I, Lundanes E, Bartkevics V. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry. J Pharm Biomed Anal. 2017;133:64–74. https://doi.org/10.1016/j.jpba.2016.11.008.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Mokh S, El Khatib M, Koubar M, Daher Z, Al IM. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: a case study natural water sources in Lebanon. Sci Total Environ. 2017;609:830–41. https://doi.org/10.1016/j.scitotenv.2017.07.230.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Márta Z, Bobaly B, Fekete J, Magda B, Imre T, Szabo PT. Simultaneous determination of ten nonsteroidal anti-inflammatory drugs from drinking water, surface water and wastewater using micro UHPLC-MS/MS with on-line SPE system. J Pharm Biomed Anal. 2018;160:99–108. https://doi.org/10.1016/j.jpba.2018.07.016.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Gezahegn T, Tegegne B, Zewge F, Chandravanshi BS. Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector. BMC Chem. 2019;13(1):28. https://doi.org/10.1186/s13065-019-0543-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    da Silva DC, Oliveira CC. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples. J Anal Methods Chem. 2018;2018:9143730. https://doi.org/10.1155/2018/9143730.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Liang Y, Liu J, Zhong Q, Yu D, Yao J, Huang T, et al. A fully automatic cross used solid-phase extraction online coupled with ultra-high performance liquid chromatography–tandem mass spectrometry system for the trace analysis of multi-class pharmaceuticals in water samples. J Pharmaceut Biomed. 2019;174:330–9. https://doi.org/10.1016/j.jpba.2019.06.004.

    CAS  Article  Google Scholar 

  41. 41.

    Edwards QA, Kulikov SM, Garner-O'Neale LD. Caffeine in surface and wastewaters in Barbados. West Indies SpringerPlus. 2015;4:57. https://doi.org/10.1186/s40064-015-0809-x.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Huang S, Zhu F, Jiang R, Zhou S, Zhu D, Liu H, et al. Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography–mass spectrometry. Talanta. 2015;136:198–203. https://doi.org/10.1016/j.talanta.2014.11.071.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Rubirola A, Boleda MR, Galceran MT. Multiresidue analysis of 24 water framework directive priority substances by on-line solid phase extraction-liquid chromatography tandem mass spectrometry in environmental waters. J Chromatogr A. 2017;1493:64–75. https://doi.org/10.1016/j.chroma.2017.02.075.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Petrie B, Smith BD, Youdan J, Barden R, Kasprzyk-Hordern B. Multi-residue determination of micropollutants in Phragmites australis from constructed wetlands using microwave assisted extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Anal Chim Acta. 2017;959:91–101. https://doi.org/10.1016/j.aca.2016.12.042.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Paiga P, Santos L, Delerue-Matos C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS. J Pharm Biomed Anal. 2017;135:75–86. https://doi.org/10.1016/j.jpba.2016.12.013.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Petrie B, Youdan J, Barden R, Kasprzyk-Hordern B. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2016;1431:64–78. https://doi.org/10.1016/j.chroma.2015.12.036.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Cotton J, Leroux F, Broudin S, Poirel M, Corman B, Junot C, et al. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry. Water Res. 2016;104:20–7. https://doi.org/10.1016/j.watres.2016.07.075.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Farajzadeh MA, Abbaspour M. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids. Talanta. 2017;174:111–21. https://doi.org/10.1016/j.talanta.2017.05.084.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Bahlmann A, Carvalho JJ, Weller MG, Panne U, Schneider RJ. Immunoassays as high-throughput tools: monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere. 2012;89(11):1278–86. https://doi.org/10.1016/j.chemosphere.2012.05.020.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Ivanov A, Evtugyn G, Budnikov H, Girotti S, Ghini S, Ferri E, et al. Amperometric immunoassay of Azinphos-methyl in water and honeybees based on indirect competitive ELISA. Anal Lett. 2008;41(3):392–405. https://doi.org/10.1080/00032710701484426.

    CAS  Article  Google Scholar 

  51. 51.

    Rhee JS, Kim BM, Jeong CB, Leung KM, Park GS, Lee JS. Development of enzyme-linked immunosorbent assay (ELISA) for glutathione S-transferase (GST-S) protein in the intertidal copepod Tigriopus japonicus and its application for environmental monitoring. Chemosphere. 2013;93(10):2458–66. https://doi.org/10.1016/j.chemosphere.2013.08.077.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Zhang Z, Zeng K, Liu J. Immunochemical detection of emerging organic contaminants in environmental waters. TrAC-Trend Anal Chem. 2017;87:49–57.

    CAS  Article  Google Scholar 

  53. 53.

    Yau KYF, Lee H, Hall JC. Emerging trends in the synthesis and improvement of hapten-specific recombinant antibodies. Biotechnol Adv. 2003;21:599–637.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Shan G, Lipton C, Gee SJ, Hammock BD. Immunoassay, biosensors and other nonchromatographic methods. In: Lee P, editor. Handbook of Residue Analytical Methods for Agrochemicals. Chichester: John Wiley & Sons, Ltd; 2002. p. 623–79.

    Google Scholar 

  55. 55.

    ECC. Drinking water quality directive, 98/83/EC. 1998.

  56. 56.

    Buchberger WW. Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A. 2011;1218(4):603–18. https://doi.org/10.1016/j.chroma.2010.10.040.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Deng A, Himmelsbach M, Zhu Q-Z, Frey S, Sengl M, Buchberger W, et al. Residue analysis of the pharmaceutical Diclofenac in different water types using ELISA and GC-MS. Environ Sci Technol. 2003;37:3422–9.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Valentini F, Compagnone D, Gentili A, Palleschi G. An electrochemical ELISA procedure for the screening of 17β-estradiol in urban waste waters. Analyst. 2002;127(10):1333–7. https://doi.org/10.1039/b204826b.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Snyder SA, Keith TL, Verbrugge DA, Snyder EM, Gross TS, Kannan K, et al. Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol. 1999;33(16):2814–20. https://doi.org/10.1021/es981294f.

    CAS  Article  Google Scholar 

  60. 60.

    Shore LS, Gurevitz M, Shemesh M. Estrogen as an environmental pollutant. B Environ Contam Tox. 1993;51(3):361–6. https://doi.org/10.1007/BF00201753.

    CAS  Article  Google Scholar 

  61. 61.

    Gagné F, Blaise C, André C, Salazar M. Effects of pharmaceutical products and municipal wastewaters on temperature-dependent mitochondrial electron transport activity in Elliptio complanata mussels. Comp Biochem Physiol C. 2006;143(4):388–93. https://doi.org/10.1016/j.cbpc.2006.04.013.

    CAS  Article  Google Scholar 

  62. 62.

    Oliveira P, Almeida A, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, et al. Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. Water Res. 2017;117:102–14. https://doi.org/10.1016/j.watres.2017.03.052.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Silva CP, Lima DL, Schneider RJ, Otero M, Esteves VI. Development of ELISA methodologies for the direct determination of 17beta-estradiol and 17alpha-ethinylestradiol in complex aqueous matrices. J Environ Manag. 2013;124:121–7. https://doi.org/10.1016/j.jenvman.2013.03.041.

    CAS  Article  Google Scholar 

  64. 64.

    Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72(1):32–42. https://doi.org/10.1007/s11418-017-1144-z.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Calisto V. Environmental occurrence and fate of psychiatric pharmaceuticals: Universidade de Aveiro; 2011 (http://hdl.handle.net/10773/7026).

  66. 66.

    Calisto V, Bahlmann A, Schneider RJ, Esteves VI. Application of an ELISA to the quantification of carbamazepine in ground, surface and wastewaters and validation with LC-MS/MS. Chemosphere. 2011;84(11):1708–15. https://doi.org/10.1016/j.chemosphere.2011.04.072.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Mikkelsen SR, Cortón E. Bioanalytical chemistry. New Jersey: John Wiley & Sons; 2004.

    Google Scholar 

  68. 68.

    Juncker D, Bergeron S, Laforte V, Li H. Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing. Curr Opin Chem Biol. 2014;18:29–37. https://doi.org/10.1016/j.cbpa.2013.11.012.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Vostrý M. Multiplex immunoassays: chips and beads. EJIFCC. 2010;20(4):162–5.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Carl P, Sarma D, Gregório BJR, Hoffmann K, Lehmann A, Rurack K, et al. Wash-free multiplexed mix-and-read suspension Array fluorescence immunoassay for anthropogenic markers in wastewater. Anal Chem. 2019;91(20):12988–96. https://doi.org/10.1021/acs.analchem.9b03040.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, et al. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect. 2012;120(9):1221–9. https://doi.org/10.1289/ehp.1104477.

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Girotti S, Ghini S, Maiolini E, Bolelli L, Ferri EN. Trace analysis of pollutants by use of honeybees, immunoassays, and chemiluminescence detection. Anal Bioanal Chem. 2013;405(2–3):555–71. https://doi.org/10.1007/s00216-012-6443-3.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Freitas R, Almeida A, Calisto V, Velez C, Moreira A, Schneider RJ, et al. The impacts of pharmaceutical drugs under ocean acidification: new data on single and combined long-term effects of carbamazepine on Scrobicularia plana. Sci Total Environ. 2016;541:977–85. https://doi.org/10.1016/j.scitotenv.2015.09.138.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Silva CP, Lima DL, Schneider RJ, Otero M, Esteves VI. Evaluation of the anthropogenic input of caffeine in surface waters of the north and center of Portugal by ELISA. Sci Total Environ. 2014;479–480:227–32. https://doi.org/10.1016/j.scitotenv.2014.01.120.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Lima DL, Silva CP, Schneider RJ, Otero M, Esteves VI. Application of dispersive liquid-liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay. Talanta. 2014;125:102–6. https://doi.org/10.1016/j.talanta.2014.02.069.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Shelver WL, Shappell NW, Franek M, Rubio FR. ELISA for sulfonamides and its application for screening in water contamination. J Agric Food Chem. 2008;56:6609–15.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Valdes ME, Huerta B, Wunderlin DA, Bistoni MA, Barcelo D, Rodriguez-Mozaz S. Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Sci Total Environ. 2016;557–558:58–67. https://doi.org/10.1016/j.scitotenv.2016.03.045.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Nicolardi S, Herrera S, Martínez Bueno MJ, Fernández-Alba AR. Two new competitive ELISA methods for the determination of caffeine and cotinine in wastewater and river waters. Anal Methods-UK. 2012;4(10):3364–71. https://doi.org/10.1039/C2AY25359C.

    CAS  Article  Google Scholar 

  79. 79.

    Bahlmann A, Weller MG, Panne U, Schneider RJ. Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Anal Bioanal Chem. 2009;395(6):1809–20. https://doi.org/10.1007/s00216-009-2958-7.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Huebner M, Weber E, Niessner R, Boujday S, Knopp D. Rapid analysis of diclofenac in freshwater and wastewater by a monoclonal antibody-based highly sensitive ELISA. Anal Bioanal Chem. 2015;407(29):8873–82. https://doi.org/10.1007/s00216-015-9048-9.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Huo SM, Yang H, Deng AP. Development and validation of a highly sensitive ELISA for the determination of pharmaceutical indomethacin in water samples. Talanta. 2007;73(2):380–6. https://doi.org/10.1016/j.talanta.2007.03.055.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Cernoch I, Franek M, Diblikova I, Hilscherova K, Randak T, Ocelka T, et al. POCIS sampling in combination with ELISA: screening of sulfonamide residues in surface and waste waters. J Environ Monit. 2012;14(1):250–7. https://doi.org/10.1039/c1em10652j.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Hoffmann H, Baldofski S, Hoffmann K, Flemig S, Silva CP, Esteves VI, et al. Structural considerations on the selectivity of an immunoassay for sulfamethoxazole. Talanta. 2016;158:198–207. https://doi.org/10.1016/j.talanta.2016.05.049.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Manickum T, John W. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Anal Bioanal Chem. 2015;407(17):4949–70. https://doi.org/10.1007/s00216-015-8546-0.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Huang C-H, Sedlak DL. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using Enzime-linked Immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem. 2001;20(1):133–9.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Dorabawila N, Gupta G. Endocrine disrupter – estradiol – in Chesapeake Bay tributaries. J Hazard Mater. 2005;120(1–3):67–71. https://doi.org/10.1016/j.jhazmat.2004.12.031.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Hintemann T, Schneider C, Scholer HF, Schneider RJ. Field study using two immunoassays for the determination of estradiol and ethinylestradiol in the aquatic environment. Water Res. 2006;40(12):2287–94. https://doi.org/10.1016/j.watres.2006.04.028.

    CAS  Article  Google Scholar 

  88. 88.

    Hirobe M, Goda Y, Okayasu Y, Tomita J, Takigami H, Ike M, et al. The use of enzyme-linked immunosorbent assays (ELISA) for the determination of pollutants in environmental and industrial wastes. Water Sci Technol. 2006;54(11–12):1–9. https://doi.org/10.2166/wst.2006.735.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Mauricio R, Diniz M, Petrovic M, Amaral L, Peres I, Barcelo D, et al. A characterization of selected endocrine disruptor compounds in a Portuguese wastewater treatment plant. Environ Monit Assess. 2006;118(1–3):75–87. https://doi.org/10.1007/s10661-006-0986-8.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Farre M, Kuster M, Brix R, Rubio F, Lopez de Alda MJ, Barcelo D. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J Chromatogr A. 2007;1160(1–2):166–75. https://doi.org/10.1016/j.chroma.2007.05.032.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Mispagel C, Allinson G, Allinson M, Shiraishi F, Nishikawa M, Moore MR. Observations on the estrogenic activity and concentration of 17beta-estradiol in the discharges of 12 wastewater treatment plants in southern Australia. Arch Environ Contam Toxicol. 2009;56(4):631–7. https://doi.org/10.1007/s00244-008-9261-z.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Schneider C, Schöler HF, Schneider RJ. Direct sub-ppt detection of the endocrine disruptor ethinylestradiol in water with a chemiluminescence enzyme-linked immunosorbent assay. Anal Chim Acta. 2005;551(1–2):92–7. https://doi.org/10.1016/j.aca.2005.07.018.

    CAS  Article  Google Scholar 

  93. 93.

    Schneider C, Scholer HF, Schneider RJ. A novel enzyme-linked immunosorbent assay for ethynylestradiol using a long-chain biotinylated EE2 derivative. Steroids. 2004;69(4):245–53. https://doi.org/10.1016/j.steroids.2004.01.003.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Kassotis CD, Alvarez DA, Taylor JA, vom Saal FS, Nagel SC, Tillitt DE. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern. Sci Total Environ. 2015;524–525:384–93. https://doi.org/10.1016/j.scitotenv.2015.04.013.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Uraipong C, Allan RD, Li C, Kennedy IR, Wong V, Lee NA. A survey of 17alpha-ethinylestradiol and mestranol residues in Hawkesbury River, Australia, using a highly specific enzyme-linked immunosorbent assay (ELISA) demonstrates the levels of potential biological significance. Ecotox Environ Safe. 2017;144:585–92. https://doi.org/10.1016/j.ecoenv.2017.06.077.

    CAS  Article  Google Scholar 

  96. 96.

    Bahlmann A, Falkenhagen J, Weller MG, Panne U, Schneider RJ. Cetirizine as pH-dependent cross-reactant in a carbamazepine-specific immunoassay. Analyst. 2011;136(7):1357–64. https://doi.org/10.1039/c0an00928h.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Adrian J, Pinacho DG, Granier B, Diserens J-M, Sánchez-Baeza F, Marco MP. A multianalyte ELISA for immunochemical screening of sulfonamide, fluoroquinolone and ß-lactam antibiotics in milk samples using class-selective bioreceptors. Anal Bioanal Chem. 2008;391(5):1703–12. https://doi.org/10.1007/s00216-008-2106-9.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Wortberg M, Kreissig SB, Jones G, Rocke DM, Hammock BD. An immunoarray for the simultaneous determination of multiple triazine herbicides. Anal Chim Acta. 1995;304(3):339–52. https://doi.org/10.1016/0003-2670(94)00651-2.

    CAS  Article  Google Scholar 

  99. 99.

    Cui X, Jin M, Du P, Chen G, Zhang C, Zhang Y, et al. Development of immunoassays for multi-residue detection of small molecule compounds. Food Agric Immunol. 2018;29(1):638–52. https://doi.org/10.1080/09540105.2018.1428284.

    CAS  Article  Google Scholar 

  100. 100.

    Reder S, Dieterle F, Jansen H, Alcock S, Gauglitz G. Multi-analyte assay for triazines using cross-reactive antibodies and neural networks. Biosens Bioelectron. 2003;19(5):447–55. https://doi.org/10.1016/S0956-5663(03)00202-1.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Bhand S, Surugiu I, Dzgoev A, Ramanathan K, Sundaram PV, Danielsson B. Immuno-arrays for multianalyte analysis of chlorotriazines. Talanta. 2005;65(2):331–6. https://doi.org/10.1016/j.talanta.2004.07.009.

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Commission Implementing Decision 2018/840 (EU) establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362).

  103. 103.

    Weigel S, Kuhlmann J, Huhnerfuss H. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci Total Environ. 2002;295:131–41.

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Biel-Maeso M, Baena-Nogueras RM, Corada-Fernandez C, Lara-Martin PA. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci Total Environ. 2018;612:649–59. https://doi.org/10.1016/j.scitotenv.2017.08.279.

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Jux U, Baginski RM, Arnold HG, Kronke M, Seng PN. Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings. Int J Hyg Environ Health. 2002;205(5):393–8. https://doi.org/10.1078/1438-4639-00166.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Ahrer W, Scherwenk E, Buchberger W. Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J Chromatogr A. 2001;910:69–78.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Hadjmohammadi MR, Ghoreishi SS. Determination of estrogens in water samples using dispersive liquid liquid microextraction and high performance liquid chromatography. Acta Chim Slov. 2011;58:765–71.

    CAS  PubMed  Google Scholar 

  108. 108.

    Rehan M, Younus H. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies. Int J Biol Macromol. 2006;38(3):289–95. https://doi.org/10.1016/j.ijbiomac.2006.03.023.

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Almeida A, Calisto V, Esteves VI, Schneider RJ, Soares AM, Figueira E, et al. Presence of the pharmaceutical drug carbamazepine in coastal systems: effects on bivalves. Aquat Toxicol. 2014;156:74–87. https://doi.org/10.1016/j.aquatox.2014.08.002.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Almeida A, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares AM, et al. Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Comp Biochem Physiol C. 2015;172–173:26–35. https://doi.org/10.1016/j.cbpc.2015.04.004.

    CAS  Article  Google Scholar 

  111. 111.

    Freitas R, Almeida A, Calisto V, Velez C, Moreira A, Schneider RJ, et al. How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease. Environ Pollut. 2015;202:205–14. https://doi.org/10.1016/j.envpol.2015.03.023.

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Freitas R, Almeida A, Pires A, Velez C, Calisto V, Schneider RJ, et al. The effects of carbamazepine on macroinvertebrate species: comparing bivalves and polychaetes biochemical responses. Water Res. 2015;85:137–47. https://doi.org/10.1016/j.watres.2015.08.003.

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Almeida A, Calisto V, Domingues MR, Esteves VI, Schneider RJ, Soares AM, et al. Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana. J Hazard Mater. 2017;323(Pt A):220–32. https://doi.org/10.1016/j.jhazmat.2016.05.009.

    CAS  Article  PubMed  Google Scholar 

  114. 114.

    Almeida A, Calisto V, Esteves VI, Schneider RJ, Soares AM, Figueira E, et al. Toxicity associated to uptake and depuration of carbamazepine in the clam Scrobicularia plana under a chronic exposure. Sci Total Environ. 2017. https://doi.org/10.1016/j.scitotenv.2016.12.069.

  115. 115.

    Almeida A, Calisto V, Esteves VI, Schneider RJ, Soares A, Figueira E, et al. Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. Aquat Toxicol. 2018;198:10–9. https://doi.org/10.1016/j.aquatox.2018.02.011.

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Almeida A, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares A, et al. Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. Environ Pollut. 2018;235:857–68. https://doi.org/10.1016/j.envpol.2017.12.121.

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, et al. Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. Sci Total Environ. 2017;601–602:793–801. https://doi.org/10.1016/j.scitotenv.2017.05.149.

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Pires A, Almeida A, Calisto V, Schneider RJ, Esteves VI, Wrona FJ, et al. Hediste diversicolor as bioindicator of pharmaceutical pollution: results from single and combined exposure to carbamazepine and caffeine. Comp Biochem Physiol C. 2016;188:30–8. https://doi.org/10.1016/j.cbpc.2016.06.003.

    CAS  Article  Google Scholar 

  119. 119.

    Teixeira M, Almeida A, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, et al. Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis. Water Res. 2017;114:316–26. https://doi.org/10.1016/j.watres.2017.02.032.

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Cruz D, Almeida Â, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, et al. Caffeine impacts in the clam Ruditapes philippinarum: alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere. 2016;160:95–103. https://doi.org/10.1016/j.chemosphere.2016.06.068.

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Pires A, Almeida A, Correia J, Calisto V, Schneider RJ, Esteves VI, et al. Long-term exposure to caffeine and carbamazepine: impacts on the regenerative capacity of the polychaete Diopatra neapolitana. Chemosphere. 2016;146:565–73. https://doi.org/10.1016/j.chemosphere.2015.12.035.

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Smolinska-Kempisty K, Guerreiro A, Canfarotta F, Caceres C, Whitcombe MJ, Piletsky S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci Rep-UK. 2016;6:37638. https://doi.org/10.1038/srep37638.

    CAS  Article  Google Scholar 

  123. 123.

    Fodey T, Leonard P, O’Mahony J, O’Kennedy R, Danaher M. Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules. TrAC-Trend Anal Chem. 2011;30(2):254–69. https://doi.org/10.1016/j.trac.2010.10.011.

    CAS  Article  Google Scholar 

  124. 124.

    Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R. Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev. 2012;4(1):1–30. https://doi.org/10.1007/s12566-011-0026-1.

    Article  PubMed  Google Scholar 

  125. 125.

    Alkhamis O, Canoura J, Yu H, Liu Y, Xiao Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. TrAC-Trend Anal Chem. 2019;121:115699. https://doi.org/10.1016/j.trac.2019.115699.

    CAS  Article  Google Scholar 

  126. 126.

    Bedwell TS, Whitcombe MJ. Analytical applications of MIPs in diagnostic assays: future perspectives. Anal Bioanal Chem. 2016;408(7):1735–51. https://doi.org/10.1007/s00216-015-9137-9.

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Bowen JL, Manesiotis P, Allender CJ. Twenty years since ‘antibody mimics’ by molecular imprinting were first proposed: a critical perspective. Top Curr Chem. 2013;1. https://doi.org/10.2478/molim-2013-0001.

  128. 128.

    Baggiani C, Anfossi L, Giovannoli C. MIP-based immunoassays: state of the art, limitations and perspectives. Top Curr Chem. 2013;1. https://doi.org/10.2478/molim-2013-0002.

  129. 129.

    BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Chen C, Luo J, Li C, Ma M, Yu W, Shen J, et al. Molecularly imprinted polymer as an antibody substitution in pseudo-immunoassays for chemical Contaminants in food and environmental samples. J Agric Food Chem. 2018;66(11):2561–71. https://doi.org/10.1021/acs.jafc.7b05577.

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IM, et al. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA – development of a novel assay for vancomycin. Anal Chem. 2013;85(17):8462–8. https://doi.org/10.1021/ac402102j.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Tang S-P, Canfarotta F, Smolinska-Kempisty K, Piletska E, Guerreiro A, Piletsky S. A pseudo-ELISA based on molecularly imprinted nanoparticles for detection of gentamicin in real samples. Anal Methods-UK. 2017;9(19):2853–8. https://doi.org/10.1039/C7AY00398F.

    CAS  Article  Google Scholar 

  133. 133.

    Wang J, Sang Y, Liu W, Liang N, Wang X. The development of a biomimetic enzyme-linked immunosorbent assay based on the molecular imprinting technique for the detection of enrofloxacin in animal-based food. Anal Methods-UK. 2017;9(47):6682–8. https://doi.org/10.1039/C7AY02321A.

    CAS  Article  Google Scholar 

  134. 134.

    Zhao D, Qiao X, Xu Z, Xu R, Yan Z. Development of a biomimetic enzyme-linked immunoassay method based on a hydrophilic molecular imprinted polymer film for determination of Olaquindox in Chick feed samples. J Immunoass Immunochem. 2013;34(1):16–29. https://doi.org/10.1080/15321819.2012.668149.

    CAS  Article  Google Scholar 

  135. 135.

    Wang J-P, Tang W-W, Fang G-Z, Pan M-F, Wang S. Development of a biomimetic enzyme-linked Immunosorbent assay method for the determination of Methimazole in urine sample. J Chin Chem Soc-TAIP. 2011;58(4):463–9. https://doi.org/10.1002/jccs.201190007.

    CAS  Article  Google Scholar 

  136. 136.

    Ogrič M, Žigon P, Lakota K, Praprotnik S, Drobne D, Štabuc B, et al. Clinically important neutralizing anti-drug antibodies detected with an in-house competitive ELISA. Clin Rheumatol. 2019;38(2):361–70. https://doi.org/10.1007/s10067-018-4213-0.

    Article  PubMed  Google Scholar 

  137. 137.

    Garcia Y, Smolinska-Kempisty K, Pereira E, Piletska E, Piletsky S. Development of competitive ‘pseudo’-ELISA assay for measurement of cocaine and its metabolites using molecularly imprinted polymer nanoparticles. Anal Methods-UK. 2017;9(31):4592–8. https://doi.org/10.1039/C7AY01523B.

    CAS  Article  Google Scholar 

  138. 138.

    Wang S, Xu Z, Fang G, Zhang Y, Liu B, Zhu H. Development of a biomimetic enzyme-linked Immunosorbent assay method for the determination of Estrone in environmental water using novel molecularly imprinted films of controlled thickness as artificial antibodies. J Agric Food Chem. 2009;57(11):4528–34. https://doi.org/10.1021/jf900505k.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

Thanks are due for the financial support to CESAM (UID/AMB/50017/2019) from FCT/MCTES through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. Guilaine Jaria’s PhD grant (SFRH/BD/138388/2018) is supported by the National Funds and FSE through FCT (Fundação para a Ciência e Tecnologia), POCH (Programa Operacional Capital Humano), and European Union. Marta Otero and Vânia Calisto received funding from FCT through the Investigator Program (IF/00314/2015) and the Individual Scientific Employment Stimulus Program (CEECIND/00007/2017), respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vânia Calisto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaria, G., Calisto, V., Otero, M. et al. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)—a practical overview. Anal Bioanal Chem 412, 3983–4008 (2020). https://doi.org/10.1007/s00216-020-02509-8

Download citation

Keywords

  • Emerging contaminants
  • Organic micropollutants
  • Ultra-sensitive analytical methods
  • Antibodies
  • Environment
  • Biological tissues
  • Environmental screening