Analytical considerations for postmortem metabolomics using GC-high-resolution MS

Abstract

Metabolomics studies that aim to qualitatively and quantitatively characterize the entirety of small endogenous biomolecules in an organism are widely conducted in the clinical setting. They also become more and more popular in the field of forensics (toxicology), e.g., to assist in postmortem investigations by objective postmortem interval estimation. However, other issues in postmortem toxicology, such as the phenomenon of (time-dependent) postmortem redistribution, have not yet been tackled by metabolomics studies. Hence, the aim of the current study was to develop an (un)targeted gas chromatography-high-resolution mass spectrometry–based method for endogenous metabolites as a tool for large-scale (un)targeted human postmortem metabolomics investigations (e.g., to objectively assess PMR) with thorough analytical evaluation of this method to ensure fitness-to-purpose in terms of reliability and robustness. This was achieved by using a targeted metabolite subset (n = 56) and a targeted processing workflow. Evaluation experiments have shown that using an artificial matrix (revised simulated body fluid (rSBF) + 5% bovine serum albumin (BSA)) for calibration purposes, all parameters lay within the scope of the method (sensitivity, selectivity, calibration model, accuracy, precision, processed sample stability, and extraction efficiency). When applying this method to large-scale studies, samples should be run in randomized order if analysis time is expected to exceed 18–24 h and potential biomarkers that are found with this method should be verified by a specialized, targeted method (e.g., by using standard addition in authentic matrix for quantification purposes). Overall, the current method can be successfully used for conduction of time-dependent postmortem metabolomics investigations.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, et al. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics. 2018;14(11):152. https://doi.org/10.1007/s11306-018-1449-2.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7(3):307–28. https://doi.org/10.1007/s11306-010-0254-3.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Bio. 2012;13(4):263–9. https://doi.org/10.1038/nrm3314.

    CAS  Article  Google Scholar 

  4. 4.

    Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research–new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem. 2019;7(319). https://doi.org/10.3389/fchem.2019.00319.

  5. 5.

    Dai X, Fan F, Ye Y, Lu X, Chen F, Wu Z, et al. An experimental study on investigating the postmortem interval in dichlorvos poisoned rats by GC/MS-based metabolomics. Leg Med. 2019;36:28–36. https://doi.org/10.1016/j.legalmed.2018.10.002.

    CAS  Article  Google Scholar 

  6. 6.

    Donaldson AE, Lamont IL. Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci. 2013;46(1):8–26. https://doi.org/10.1080/00450618.2013.784356.

    Article  Google Scholar 

  7. 7.

    Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLOS ONE. 2013;8(11):e82011. https://doi.org/10.1371/journal.pone.0082011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Donaldson AE, Lamont IL. Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics. 2014;11(1):237–45. https://doi.org/10.1007/s11306-014-0691-5.

    CAS  Article  Google Scholar 

  9. 9.

    Kang Y-R, Park YS, Park YC, Yoon SM, JongAhn H, Kim G, et al. UPLC/Q-TOF MS based metabolomics approach to post-mortem-interval discrimination: mass spectrometry based metabolomics approach. J Pharm Invest. 2012;42(1):41–6. https://doi.org/10.1007/s40005-012-0006-7.

    CAS  Article  Google Scholar 

  10. 10.

    Kaszynski RH, Nishiumi S, Azuma T, Yoshida M, Kondo T, Takahashi M, et al. Postmortem interval estimation: a novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Anal Bioanal Chem. 2016;408(12):3103–12. https://doi.org/10.1007/s00216-016-9355-9.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sato T, Zaitsu K, Tsuoboi K, Nomura M, Kusano M, Shima N, et al. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Anal Bioanal Chem. 2015;407:3659–65. https://doi.org/10.1007/s00216-015-8584-7.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wu Z, Lu X, Chen F, Dai X, Ye Y, Yan Y, et al. Estimation of early postmortem interval in rats by GC–MS-based metabolomics. Leg Med. 2018;31:42–8. https://doi.org/10.1016/j.legalmed.2017.12.014.

    CAS  Article  Google Scholar 

  13. 13.

    Pelissier-Alicot AL, Gaulier JM, Champsaur P, Marquet P. Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol. 2003;27(8):533–44.

    CAS  Article  Google Scholar 

  14. 14.

    Brinkmann B, Madea B. Handbuch gerichtliche Medizin, vol. 2. Berlin Heidelberg NewYork: Springer-Verlag; 2004.

    Google Scholar 

  15. 15.

    Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400. https://doi.org/10.1146/annurev.pharmtox.47.120505.105154.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Peters FT, Steuer AE. Antemortem and postmortem influences on drug concentrations and metabolite patterns in postmortem species. WIREs Forensic Sci. 2019;1:e1297.

    Google Scholar 

  17. 17.

    Lemaire E, Schmidt C, Denooz R, Charlier C, Boxho P. Postmortem concentration and redistribution of diazepam, methadone, and morphine with subclavian and femoral vein dissection/clamping. J Forensic Sci. 2016;61(6):1596–603. https://doi.org/10.1111/1556-4029.13213.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Skopp G. Postmortem toxicology. Forensic Sci Med Pathol. 2010;6(4):314–25. https://doi.org/10.1007/s12024-010-9150-4.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Brockbals L, Staeheli SN, Gascho D, Ebert LC, Kraemer T, Steuer AE. Time-dependent postmortem redistribution of opioids in blood and alternative matrices. J Anal Toxicol. 2018;42(6):365–74. https://doi.org/10.1093/jat/bky017.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Staeheli SN, Poetzsch M, Kraemer T, Steuer AE. Development and validation of a dynamic range-extended LC-MS/MS multi-analyte method for 11 different postmortem matrices for redistribution studies applying solvent calibration and additional 13C isotope monitoring. Anal Bioanal Chem. 2015;407:8681–712. https://doi.org/10.1007/s00216-015-9023-5).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Staeheli SN, Gascho D, Fornaro J, Laberke P, Ebert LC, Martinez RM, et al. Development of CT-guided biopsy sampling for time-dependent postmortem redistribution investigations in blood and alternative matrices--proof of concept and application on two cases. Anal Bioanal Chem. 2016;408(4):1249–58. https://doi.org/10.1007/s00216-015-9234-9.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Staeheli SN, Gascho D, Ebert LC, Kraemer T, Steuer AE. Time-dependent postmortem redistribution of morphine and its metabolites in blood and alternative matrices-application of CT-guided biopsy sampling. Int J Legal Med. 2017;131(2):379–89. https://doi.org/10.1007/s00414-016-1485-2.

    Article  PubMed  Google Scholar 

  23. 23.

    Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78. https://doi.org/10.1002/mas.20108.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Research. 2013;41(D1):D801–7. https://doi.org/10.1093/nar/gks1065.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65A(2):188–95. https://doi.org/10.1002/jbm.a.10482.

    CAS  Article  Google Scholar 

  26. 26.

    Brockbals L, Habicht M, Hajdas I, Galassi FM, Rühli FJ, Kraemer T. Untargeted metabolomics-like screening approach for chemical characterization and differentiation of canopic jar and mummy samples from Ancient Egypt using GC-high resolution MS. The Analyst. 2018;143(18):4503–12. https://doi.org/10.1039/C8AN01288A.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165(2):216–24. https://doi.org/10.1016/j.forsciint.2006.05.021.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Peters FT, Hartung M, Herbold M, Schmitt G, Daltrup T, Musshoff F. Appendix B to the GTFCh guidelines for quality assurance in forensic-toxicological analyses. Requirements for the validation of analytical methods. Toxichem Krimtech. 2009;76:185.

    Google Scholar 

  29. 29.

    Yang Y, Cruickshank C, Armstrong M, Mahaffey S, Reisdorph R, Reisdorph N. New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome. J Chromatogr A. 2013;1300:217–26. https://doi.org/10.1016/j.chroma.2013.04.030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285–96. https://doi.org/10.1021/ac8024569.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem. 2006;78(3):743–52. https://doi.org/10.1021/ac051312t.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sauerschnig C, Doppler M, Bueschl C, Schuhmacher R. Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Metabolites. 2018;8(1):1.

    Article  Google Scholar 

  33. 33.

    Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, et al. NMR and MS methods for metabolomics. In: Gautier J-C, editor. Drug safety evaluation: methods and protocols. New York, NY: Springer New York; 2017. p. 229–58. https://doi.org/10.1007/978-1-4939-7172-5_13.

    Google Scholar 

  34. 34.

    Stuart B. Decomposition chemistry: overview, analysis, and interpretation A2 - Siegel, Jay A. In: Saukko PJ, Houck MM, editors. Encyclopedia of Forensic Sciences. Waltham: Academic Press; 2013. p. 11–5. https://doi.org/10.1016/B978-0-12-382165-2.00120-3.

    Google Scholar 

  35. 35.

    Dienel GA. Metabolomic assays of postmortem brain extracts: pitfalls in extrapolation of concentrations of glucose and amino acids to metabolic dysregulation in vivo in neurological diseases. Neurochem Res. 2018. https://doi.org/10.1007/s11064-018-2611-y.

  36. 36.

    Thakare R, Chhonker YS, Gautam N, Alamoudi JA, Alnouti Y. Quantitative analysis of endogenous compounds. J Pharm Biomed Anal. 2016;128:426–37. https://doi.org/10.1016/j.jpba.2016.06.017.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hess C, Sydow K, Kueting T, Kraemer M, Maas A. Considerations regarding the validation of chromatographic mass spectrometric methods for the quantification of endogenous substances in forensics. Forensic Sci Int. 2018;283:150–5. https://doi.org/10.1016/j.forsciint.2017.12.019.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Peters FT, Remane D. Aspects of matrix effects in applications of liquid chromatography–mass spectrometry to forensic and clinical toxicology—a review. Anal Bioanal Chem. 2012;403(8):2155–72. https://doi.org/10.1007/s00216-012-6035-2.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Drummer OH, Gerostamoulos J. Postmortem drug analysis: analytical and toxicological aspects. Ther Drug Monit. 2002;24(2):199–209.

    CAS  Article  Google Scholar 

  40. 40.

    Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal. 2018;147:149–73. https://doi.org/10.1016/j.jpba.2017.07.044.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4(18):2249–64. https://doi.org/10.4155/bio.12.204.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Emma Louise Kessler, MD, for her generous legacy that she donated to the Institute of Forensic Medicine at the University of Zurich, Switzerland, for research purposes. The authors would like to thank the scientists from the Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea E. Steuer.

Ethics declarations

The study was performed in full conformance with Swiss ethical laws, particularly those covering the use of human material in research. A waiver of the Cantonal Ethics Board of the Canton of Zurich was obtained (BASEC-Nr. Req-2017-00946) which states that small quantities of anonymized biological material obtained during investigations of the public prosecutor (e.g., during autopsies) can be used for research purposes without informed consent of the legally authorized representatives.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brockbals, L., Kraemer, T. & Steuer, A.E. Analytical considerations for postmortem metabolomics using GC-high-resolution MS. Anal Bioanal Chem 412, 6241–6255 (2020). https://doi.org/10.1007/s00216-019-02258-3

Download citation

Keywords

  • Postmortem metabolomics
  • GC-MS
  • Forensic toxicology
  • Method evaluation
  • High resolution