Skip to main content
Log in

Selective, sensitive, and fast determination of S-layer proteins by a molecularly imprinted photonic polymer coated film and a fiber-optic spectrometer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A newly developed molecularly imprinted photonic polymer (MIPP) film, which was prepared by colloidal crystal templating and surface molecular imprinting, was used for selective capture of S-layer protein (SLP) from a complex Lactobacillus acidophilus sample. The colloidal crystal templates were formed by a dipping process followed by chemical binding of the imprinted template SLP molecules. A sandwich structure consisting of two glass slides was formed after the SLP–silica layer had been covered with a poly(methyl methacrylate) glass slide. After polymerization of the SLP–silica layer with the preprepared polymerization solution, hydrofluoric acid and acetic phosphate buffer solutions removed the silica particles and SLP molecules, respectively. The MIPP film obtained exhibited a three-dimensional, highly ordered and interconnected macroporous structure (pore size greater than 200 nm), which is specifically accessible to SLP molecules. The adsorbed SLP molecules were simply and straightforwardly detected by a fiber-optic spectrometer. The redshift of the Bragg diffraction peak of the MIPP film was linearly related to the number of SLP molecules that had been harvested in the film. The detection limit of the SLP–MMIP–fiber-optic spectrometer method for SLP was 1 ng mL-1. The MIPP sensor was successfully applied to detect SLP molecules in a crudely extracted Lactobacillus acidophilus sample. Our results prove the applicability of the SLP–MIPP film for fast and real-time measurement of SLP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    CAS  PubMed  Google Scholar 

  2. Fields S, O-k S. A novel genetic system to detect protein–protein interactions. Nature. 1989;340(6230):245.

    CAS  PubMed  Google Scholar 

  3. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41.

    CAS  PubMed  Google Scholar 

  4. Sapan CV, Lundblad RL, Price NC. Colorimetric protein assay techniques. Biotechnol Appl Biochem. 1999;29(2):99–108.

    CAS  PubMed  Google Scholar 

  5. Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H. Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom. 2004;10(3):335–48.

    CAS  Google Scholar 

  6. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.

    CAS  PubMed  Google Scholar 

  7. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31.

    CAS  PubMed  Google Scholar 

  8. Vandermeeren M, Mercken M, Vanmechelen E, Six J, Van de Voorde A, Martin JJ, et al. Detection of proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem. 1993;61(5):1828–34.

    CAS  PubMed  Google Scholar 

  9. Leca-Bouvier B, Blum LJ. Biosensors for protein detection: a review. Anal Lett. 2005;38(10):1491–517.

    CAS  Google Scholar 

  10. Bossi A, Bonini F, Turner APF, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2007;22(6):1131–7.

    CAS  PubMed  Google Scholar 

  11. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40(5):2922–42.

    CAS  PubMed  Google Scholar 

  12. Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF. Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem. 2001;73(21):5281–6.

    CAS  PubMed  Google Scholar 

  13. Li Y, Yang H-H, You Q-H, Zhuang Z-X, Wang X-R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem. 2006;78(1):317–20.

    CAS  PubMed  Google Scholar 

  14. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, et al. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev. 2011;40(3):1547–71.

    CAS  PubMed  Google Scholar 

  15. Xie X, Hu Q, Ke R, Zhen X, Bu Y, Wang S. Facile preparation of photonic and magnetic dual responsive protein imprinted nanomaterial for specific recognition of bovine hemoglobin. Chem Eng J. 2019;371:130–7.

    CAS  Google Scholar 

  16. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45(8):2137–211.

    CAS  PubMed  Google Scholar 

  17. Qi Z, Hong Z, Qiang Z, Yan-Shuo X, Yan-Hong W. Preparation and application of methomyl molecularly imprinted photonic crystal sensor. Chin J Anal Chem. 2019;47(6):883–9.

    Google Scholar 

  18. Chen W, Meng Z, Xue M, Shea KJ. Molecular imprinted photonic crystal for sensing of biomolecules. Mol Impr. 2016;4(1):1–12.

    Google Scholar 

  19. Li J, Zhang Z, Xu S, Chen L, Zhou N, Xiong H, et al. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J Mater Chem. 2011;21(48):19267–74.

    CAS  Google Scholar 

  20. Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3(14):7437–44.

    CAS  Google Scholar 

  21. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, et al. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens. 2018;3(2):378–85.

    CAS  PubMed  Google Scholar 

  22. Peng H, Wang S, Zhang Z, Xiong H, Li J, Chen L, et al. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J Agric Food Chem. 2012;60(8):1921–8.

    CAS  PubMed  Google Scholar 

  23. Kadhem A, Xiang S, Nagel S, Lin C-H, Fidalgo de Cortalezzi M. Photonic molecularly imprinted polymer film for the detection of testosterone in aqueous samples. Polymers. 2018;10(4):349.

    PubMed Central  Google Scholar 

  24. Huang C, Cheng Y, Gao Z, Zhang H, Wei J. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens Actuators B. 2018;273:1705–12.

    CAS  Google Scholar 

  25. Li J, Fu J, Yang Q, Wang L, Wang X, Chen L. Thermosensitive molecularly imprinted core–shell CdTe quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst. 2018;143(15):3570–8.

    CAS  PubMed  Google Scholar 

  26. Hu X, Li G, Huang J, Zhang D, Qiu Y. Construction of self-reporting specific chemical sensors with high sensitivity. Adv Mater. 2007;19(24):4327–32.

    CAS  Google Scholar 

  27. Chen W, Lei W, Xue M, Xue F, Meng Z-H, Zhang W-B, et al. Protein recognition by a surface imprinted colloidal array. J Mater Chem A. 2014;2(20):7165–9.

    CAS  Google Scholar 

  28. Chen W, Xue M, Shea KJ, Meng Z, Yan Z, Wang Z, et al. Molecularly imprinted hollow sphere array for the sensing of proteins. J Biophoton. 2015;8(10):838–45.

    CAS  Google Scholar 

  29. Zhao YJ, Zhao XW, Hu J, Li J, Xu WY, Gu ZZ. Multiplex label-free detection of biomolecules with an imprinted suspension array. Angew Chem Int Ed. 2009;48(40):7350–2.

    CAS  Google Scholar 

  30. Zhang Y-X, Zhao P-Y, Yu L-P. Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sens Actuators B. 2013;181:850–7.

    CAS  Google Scholar 

  31. Wu Z, Tao Ca LC, Shen D, Li G. Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem Eur J. 2008;14(36):11358–68.

    CAS  PubMed  Google Scholar 

  32. Frece J, Kos B, Svetec I-K, Zgaga Z, Mrša V, Šušković J. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J Appl Microbiol. 2005;98(2):285–92.

    CAS  PubMed  Google Scholar 

  33. Konstantinov SR, Smidt H, De Vos WM, Bruijns SCM, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008;105(49):19474–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol. 2007;115(3):307–12.

    CAS  PubMed  Google Scholar 

  35. Johnsonhenry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol. 2010;9(2):356–67.

    Google Scholar 

  36. Martínez MG, Prado AM, Candurra NA, Ruzal SM. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun. 2012;422(4):590–5.

    PubMed  PubMed Central  Google Scholar 

  37. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62–9.

    Google Scholar 

  38. Yang Q, Peng H, Li J, Li Y, Xiong H, Chen L. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. New J Chem. 2017;41(18):10174–80.

    CAS  Google Scholar 

  39. Yang Z, Shi D, Chen M, Liu S. Free-standing molecularly imprinted photonic hydrogels based on β-cyclodextrin for the visual detection of l-tryptophan. Anal Methods. 2015;7(19):8352–9.

    CAS  Google Scholar 

  40. Tennico YH, Hutanu D, Koesdjojo MT, Bartel CM, Remcho VT. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem. 2010;82(13):5591–7.

    CAS  PubMed  Google Scholar 

  41. Bo BK, Im WJ, Ju YB, Kim HM, Kim MG, Shin YB. Label-free CRP detection using optical biosensor with one-step immobilization of antibody on nitrocellulose membrane. Sens Actuators B. 2014;190(1):243–8.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Funding of China (31671869, 31471598, 31571852, and 31601487), Natural Science Funding of Jiangsu (BK20151544), and Natural Science Funding of Zhejiang (LQ16C200002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daodong Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving humans and/or animals

No human participants and/or animals were involved in this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Xun, M., Lan, H. et al. Selective, sensitive, and fast determination of S-layer proteins by a molecularly imprinted photonic polymer coated film and a fiber-optic spectrometer. Anal Bioanal Chem 411, 7737–7745 (2019). https://doi.org/10.1007/s00216-019-02109-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02109-1

Keywords

Navigation