Skip to main content

Advertisement

Log in

Self-propelled micromachines for analytical sensing: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Self-propelled micromotors are micro- and nanoscale devices that move autonomously in solution by converting a specific stimulus into mechanical work. The broad scope of operations and applications along with the ultra-small dimensions have opened new possibilities to solve complex analytical challenges. Herein we give a critical overview of early developments and future prospects of such tiny moving objects for different analytical sensing and biosensing strategies. From early electrophoretic propelled nanomotors, which were limited to low viscous media, to bubble-propelled micromotors, the field has evolved into sophisticated all-in-one analytical systems with built-in sensing capabilities. Current progress for in vivo biosensing and integration into analytical instrumentation towards fully functional devices will be also covered. We hope that this review provides the reader with some general knowledge and future prospects of self-propelled micromachines as a new paradigm in analytical chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A. Dream nanomachines. Advd Mater. 2005;17(24):3011–8.

    Article  CAS  Google Scholar 

  2. Wang W, Chiang TY, Velegol D, Mallouk TE. Understanding the efficiency of autonomous nano- and microscale motors. J Am Chem Soc. 2013;135(28):10557–65.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano. 2016;10(6):5619–34.

    Article  CAS  PubMed  Google Scholar 

  4. Ebbens SJ, Howse JR. In pursuit of propulsion at the nanoscale. Soft Matter. 2010;6(4):726.

    Article  CAS  Google Scholar 

  5. Mei Y, Solovev AA, Sanchez S, Schmidt OG. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev. 2011;40(5):2109–19.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J. Nanomachines: fundamentals and applications. Weinheim: Wiley-VCH; 2013.

    Book  Google Scholar 

  7. Jurado-Sánchez B, Escarpa A. Janus micromotors for electrochemical sensing and biosensing applications: a review. Electroanalysis. 2017;29(1):14–23.

    Article  CAS  Google Scholar 

  8. Peng F, Tu Y, Wilson DA. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev. 2017;46(17):5289–310.

    Article  CAS  PubMed  Google Scholar 

  9. Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for chemistry-on-the-fly. J Am Chem Soc. 2018;140(11):3810–20.

    Article  CAS  PubMed  Google Scholar 

  10. Dong R, Cai Y, Yang Y, Gao W, Ren B. Photocatalytic micro/nanomotors: from construction to applications. Acc Chem Res. 2018;51(9):1940–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ortiz-Rivera I, Mathesh M, Wilson DA. A supramolecular approach to nanoscale motion: polymersome-based self-propelled nanomotors. Acc Chem Res. 2018;51(9):1891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc Chem Res. 2018;51(11):2662–71.

    Article  CAS  PubMed  Google Scholar 

  13. Ren L, Wang W, Mallouk TE. Two forces are better than one: combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc Chem Res. 2018;51(9):1948–56.

    Article  CAS  PubMed  Google Scholar 

  14. Kong L, Guan J, Pumera M. Micro- and nanorobots based sensing and biosensing. Curr Opin Electrochem. 2018;10:174–82.

    Article  CAS  Google Scholar 

  15. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig G-U, et al. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc. 2009;131(34):12082–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orozco J, Jurado-Sánchez B, Wagner G, Gao W, Vazquez-Duhalt R, Sattayasamitsathit S, et al. Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir. 2014;30(18):5082–7.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens Bioelectron. 2016;76:234–42.

    Article  CAS  PubMed  Google Scholar 

  18. Rojas D, Jurado-Sánchez B, Escarpa A. “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal Chem. 2016;88(7):4153–60.

    Article  CAS  PubMed  Google Scholar 

  19. Esteban-Fernández de Ávila B, Martín A, Soto F, Lopez-Ramirez MA, Campuzano S, Vásquez-Machado GM, et al. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015;9(7):6756–64.

    Article  CAS  PubMed  Google Scholar 

  20. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–89.

    Article  CAS  Google Scholar 

  21. Martin CR. Nanomaterials: a membrane-based synthetic approach. Science. 1994;266(5193):1961–6.

    Article  CAS  PubMed  Google Scholar 

  22. Uygun M, Jurado-Sánchez B, Uygun DA, Singh VV, Zhang L, Wang J. Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale. 2017;9(46):18423–9.

    Article  CAS  PubMed  Google Scholar 

  23. Campuzano S, Kagan D, Orozco J, Wang J. Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst. 2011;136(22):4621–30.

    Article  CAS  PubMed  Google Scholar 

  24. Ezhilan B, Gao W, Pei A, Rozen I, Dong R, Jurado-Sanchez B, et al. Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale. 2015;7(17):7833–40.

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. Motion-based DNA detection using catalytic nanomotors. Nat Commun. 2010;1:36.

    Article  CAS  PubMed  Google Scholar 

  26. Bunea A-I, Pavel I-A, David S, Gáspár S. Sensing based on the motion of enzyme-modified nanorods. Biosens Bioelectron. 2015;67:42–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, et al. Submicrometer metallic barcodes. Science. 2001;294(5540):137–41.

    Article  PubMed  Google Scholar 

  28. Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J. Polymer-based tubular microbots: role of composition and preparation. Nanoscale. 2012;4(7):2447–53.

    Article  CAS  PubMed  Google Scholar 

  29. Maria-Hormigos R, Jurado-Sanchez B, Vazquez L, Escarpa A. Carbon allotrope nanomaterials based catalytic micromotors. Chem Mater. 2016;28(24):8962–70.

    Article  CAS  Google Scholar 

  30. Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Graphene quantum dot based micromotors: a size matter. Chem Commun. 2019.

  31. Jurado-Sánchez B, Pacheco M, Maria-Hormigos R, Escarpa A. Perspectives on Janus micromotors: materials and applications. Appl Mater Today. 2017;9:407–18.

    Article  Google Scholar 

  32. Yi Y, Sanchez L, Gao Y, Yu Y. Janus particles for biological imaging and sensing. Analyst. 2016;141(12):3526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, et al. Self-propelled activated carbon janus micromotors for efficient water purification. Small. 2015;11(4):499–506.

    Article  CAS  PubMed  Google Scholar 

  34. Gao W, Liu M, Liu L, Zhang H, Dong B, Li CY. One-step fabrication of multifunctional micromotors. Nanoscale. 2015;7(33):13918–23.

    Article  CAS  PubMed  Google Scholar 

  35. Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46(11):2513–23.

    Article  CAS  PubMed  Google Scholar 

  36. Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, et al. Transient Micromotors that disappear when no longer needed. ACS Nano. 2016;10(11):10389–96.

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Karshalev E, Guan J, Wang J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small. 2018;14(23):1704252.

    Article  CAS  Google Scholar 

  38. Gao W, Uygun A, Wang J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc. 2012;134(2):897–900.

    Article  CAS  PubMed  Google Scholar 

  39. Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J. Artificial enzyme-powered microfish for water-quality testing. ACS Nano. 2013;7(1):818–24.

    Article  CAS  PubMed  Google Scholar 

  40. Singh VV, Kaufmann K. Esteban-Fernández de Ávila B, Uygun M, Wang J. Nanomotors responsive to nerve-agent vapor plumes. Chem Commun. 2016;52(16):3360–3.

    Article  CAS  Google Scholar 

  41. Moo JGS, Wang H, Zhao G, Pumera M. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem Eur J. 2014;20(15):4292–6.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao G, Sanchez S, Schmidt OG, Pumera M. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale. 2013;5(7):2909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Nguyen K, Minteer SD. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun. 2015;51(23):4782–4.

    Article  CAS  Google Scholar 

  44. Fu S, Zhang X, Xie Y, Wu J, Ju H. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale. 2017;9(26):9026–33.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Chen C, Wu J, Ju H. Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl Mater Interfaces. 2019;11(14):13581–8.

    Article  CAS  PubMed  Google Scholar 

  46. Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 2012;12(1):396–401.

    Article  CAS  PubMed  Google Scholar 

  47. Orozco J, Pan G, Sattayasamitsathit S, Galarnyk M, Wang J. Micromotors to capture and destroy anthrax simulant spores. Analyst. 2015;140(5):1421–7.

    Article  CAS  PubMed  Google Scholar 

  48. Maria-Hormigos R, Jurado-Sanchez B, Escarpa A. Labs-on-a-chip meet self-propelled micromotors. Lab Chip. 2016;16(13):2397–407.

    Article  CAS  PubMed  Google Scholar 

  49. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig GU, Wang J. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 2011;11(5):2083–7.

    Article  CAS  PubMed  Google Scholar 

  50. Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, Lobo-Castañon MJ, Lim N, et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed. 2011;50(18):4161–4.

    Article  CAS  Google Scholar 

  51. Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal Chem. 2011;83(20):7962–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yu X, Li Y, Wu J, Ju H. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem. 2014;86(9):4501–7.

    Article  CAS  PubMed  Google Scholar 

  53. García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, et al. Micromotor-based lab-on-chip immunoassays. Nanoscale. 2013;5(4):1325–31.

    Article  PubMed  Google Scholar 

  54. Vilela D, Orozco J, Cheng G, Sattayasamitsathit S, Galarnyk M, Kan C, et al. Multiplexed immunoassay based on micromotors and microscale tags. Lab Chip. 2014;14(18):3505–9.

    Article  CAS  PubMed  Google Scholar 

  55. Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Tailored magnetic carbon allotrope catalytic micromotors for ‘on-chip’ operations. Nanoscale. 2017;9(19):6286–90.

    Article  CAS  PubMed  Google Scholar 

  56. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens Bioelectron. 2018;110:141–6.

    Article  CAS  PubMed  Google Scholar 

  57. Cinti S, Valdés-Ramírez G, Gao W, Li J, Palleschi G, Wang J. Microengine-assisted electrochemical measurements at printable sensor strips. Chem Commun. 2015;51(41):8668–71.

    Article  CAS  Google Scholar 

  58. Singh VV, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem Commun. 2015;51(56):11190–3.

    Article  CAS  Google Scholar 

  59. Jurado-Sánchez B, Escarpa A, Wang J. Lighting up micromotors with quantum dots for smart chemical sensing. Chem Commun. 2015;51(74):14088–91.

    Article  CAS  Google Scholar 

  60. Beatriz JS, Marta P, Jaime R, Alberto E. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed. 2017;56(24):6957–61.

    Article  CAS  Google Scholar 

  61. Pacheco M, Jurado-Sánchez B, Escarpa A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal Chem. 2018;90(4):2912–7.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3(14):7437–44.

    Article  CAS  Google Scholar 

  63. Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, et al. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc. 2013;135(14):5336–9.

    Article  CAS  PubMed  Google Scholar 

  64. Karshalev E, Kumar R, Jeerapan I, Castillo R, Campos I, Wang J. Multistimuli-responsive camouflage swimmers. Chem Mater. 2018;30(5):1593–601.

    Article  CAS  Google Scholar 

  65. Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Báez DF, Jodra A, Singh VV, Kaufmann K, et al. Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sensors. 2016;1(3):217–21.

    Article  CAS  Google Scholar 

  66. Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal Chem. 2017;89(20):10850–7.

    Article  CAS  PubMed  Google Scholar 

  67. Molinero-Fernández Á, Jodra A, Moreno-Guzmán M, López MÁ, Escarpa A. Magnetic reduced graphene oxide/nickel/platinum nanoparticles micromotors for mycotoxin analysis. Chem Eur J. 2018;24(28):7172–6.

    Article  CAS  PubMed  Google Scholar 

  68. Singh VV, Kaufmann K, de Ávila BE-F, Karshalev E, Wang J. Molybdenum disulfide-based tubular microengines: toward biomedical applications. Adv Funct Mater. 2016;26(34):6270–8.

    Article  CAS  Google Scholar 

  69. de Ávila BE-F, Zhao M, Campuzano S, Ricci F, Pingarrón JM, Mascini M, et al. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–7.

    Article  CAS  PubMed  Google Scholar 

  70. María-Hormigos R, Jurado-Sánchez B, Escarpa A. Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal Chem. 2018;90(16):9830–7.

    Article  CAS  PubMed  Google Scholar 

  71. Venugopalan PL, Sai R, Chandorkar Y, Basu B, Shivashankar S, Ghosh A. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 2014;14(4):1968–75.

    Article  CAS  PubMed  Google Scholar 

  72. Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot. 2017;2(12):eaaq1155.

    Article  Google Scholar 

  73. Jung I, Ih S, Yoo H, Hong S, Park S. Fourier transform surface plasmon resonance of nanodisks embedded in magnetic nanorods. Nano Lett. 2018;18(3):1984–92.

    Article  CAS  PubMed  Google Scholar 

  74. Moo JGS, Pumera M. Self-propelled micromotors monitored by particle-electrode impact voltammetry. ACS Sens. 2016;1(7):949–57.

    Article  CAS  Google Scholar 

  75. Draz MS, Kochehbyoki KM, Vasan A, Battalapalli D, Sreeram A, Kanakasabapathy MK, et al. DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. Nat Commun. 2018;9(1):4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vilela D, Cossío U, Parmar J, Martínez-Villacorta AM, Gómez-Vallejo V, Llop J, et al. Medical imaging for the tracking of micromotors. ACS Nano. 2018;12(2):1220–7.

    Article  CAS  PubMed  Google Scholar 

  77. Li J, Thamphiwatana S, Liu W. Esteban-Fernández de Ávila B, Angsantikul P, Sandraz E, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016;10(10):9536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M. Pacheco acknowledges the FPU fellowship received from the Spanish Ministry of Education (FPU 16/02211). B. J.-S. acknowledges support from the Spanish Ministry of Science, Innovation and Universities (RYC-2015-17558, co-financed by EU) and from the University of Alcala (CCG2018/EXP-018). A.E. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (CTQ2017-86441-C2-1-R) and the TRANSNANOAVANSENS program (S2018/NMT-4349) from the Community of Madrid.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beatriz Jurado-Sánchez or Alberto Escarpa.

Ethics declarations

Conflict of interest

There are no conflict of interests to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, M., López, M.Á., Jurado-Sánchez, B. et al. Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem 411, 6561–6573 (2019). https://doi.org/10.1007/s00216-019-02070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02070-z

Keywords

Navigation