Skip to main content
Log in

Enhancing signal and mitigating up-front peptide fragmentation using controlled clustering by gas-phase modifiers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Up-front CID fragmentation is a phenomenon where molecular ions are activated and fragment as they enter the atmosphere-to-vacuum region of the mass spectrometer, and consequently can complicate the mass spectra and their analysis. This phenomenon can be minimized by controlling the voltages on lens/optic elements where ions are sampled from the atmospheric region, but this approach can also have a negative effect on overall ion sensitivity. In this study, we introduce gas-phase modifiers (acetonitrile, acetone, cyclohexane, water, and methanol) to the curtain gas to mitigate up-front CID fragmentation. These modifiers cluster with incoming ions, increasing the energy barrier to fragmentation and consequently reducing the complexity of mass spectra. The clustering is monitored by differential mobility spectrometry-mass spectrometry (DMS-MS) and precursor mass spectrum-scanning. Unlike typical singly charged species, peptide ion-modifier clusters were found to survive through the atmosphere-to-vacuum interface of the mass spectrometer, showing that highly charged peptides cluster most strongly with acetonitrile and acetone. In addition, when peptides cluster with acetonitrile, they produce a large increase in signal intensity for the most highly charged and fragile ions. This results in a significant reduction, up to 90% with some modifiers, in up-front CID fragmentation for these fragile highly charged peptides, increasing the overall analytical sensitivity and decreasing the limits of detection by up to 82% depending on the analyte. The proposed technique has no significant detrimental effect on the peptide mass fingerprinting of a BSA or mAb protein digest, but it does reduce the amount of redundant and data-deficient spectra needed to produce adequate sequence coverage using information-dependent acquisition methods by ~ 40%. We propose that this technique could have a benefit in the fields of proteomics and peptidomics where up-front CID fragmentation and chemical noise routinely mask targets of biological importance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen F, Wang L-H, Zhou Q, Huang X-H, Zhang J-Z, Zhu P-Y, et al. Simultaneous determination of aniline, benzidine, microcystins, and carbaryl in water using ultra-performance liquid chromatography–electrospray ionization tandem mass spectrometry. Water Air Soil Pollut. 2017;228:69. https://doi.org/10.1007/s11270-017-3260-5.

    Article  CAS  Google Scholar 

  2. Wood TP, Du Preez C, Steenkamp A, Duvenage C, Rohwer ER. Database-driven screening of south African surface water and the targeted detection of pharmaceuticals using liquid chromatography - high resolution mass spectrometry. Environ Pollut. 2017;230:453–62. https://doi.org/10.1016/j.envpol.2017.06.043.

    Article  CAS  PubMed  Google Scholar 

  3. Campos-Mañas MC, Plaza-Bolaños P, Sánchez-Pérez JA, Malato S, Agüera A. Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2017;1507:84–94. https://doi.org/10.1016/j.chroma.2017.05.053.

    Article  CAS  PubMed  Google Scholar 

  4. Liao H-C, Chan M-J, Yang C-F, Chiang C-C, Niu D-M, Huang C-K, Gelb MH, Mass spectrometry but not fluorimetry distinguishes affected and pseudodeficiency patients in newborn screening for Pompe disease. Clin. Chem. 63 (2017). doi: https://doi.org/10.1373/clinchem.2016.269027.

  5. Clark ZD, Cutler JM, Pavlov IY, Strathmann FG, Frank EL. Simple dilute-and-shoot method for urinary vanillylmandelic acid and homovanillic acid by liquid chromatography tandem mass spectrometry. Clin Chim Acta. 2017;468:201–8. https://doi.org/10.1016/j.cca.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  6. Saville JT, Smith NJC, Fletcher JM, Fuller M. Quantification of plasma sulfatides by mass spectrometry: utility for metachromatic leukodystrophy. Anal Chim Acta. 2017;955:79–85. https://doi.org/10.1016/j.aca.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. International Journal of Analytical Chemistry 2012;2012:1–40. https://doi.org/10.1155/2012/282574.

    Article  CAS  Google Scholar 

  8. Gabelica V, De Pauw E. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev. 2005;24:566–87. https://doi.org/10.1002/mas.20027.

    Article  CAS  PubMed  Google Scholar 

  9. Vékey K. Internal energy effects in mass spectrometry. J Mass Spectrom. 1996;31:445–63. https://doi.org/10.1002/(SICI)1096-9888(199605)31:5<445::AID-JMS354>3.0.CO;2-G.

    Article  Google Scholar 

  10. Liu Y, Pereira ADS, Martin JW. Discovery of C5-C17 poly- and perfluoroalkyl substances in water by in-line Spe-HPLC-Orbitrap with up-front CID fragmentation flagging. Anal Chem. 2015;87:4260–8. https://doi.org/10.1021/acs.analchem.5b00039.

    Article  CAS  PubMed  Google Scholar 

  11. Abrankó L, García-Reyes JF, Molina-Díaz A. Up-front CID fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J Mass Spectrom. 2011;46:478–88. https://doi.org/10.1002/jms.1914.

    Article  CAS  PubMed  Google Scholar 

  12. Nuengchamnong N, Sookying S, Ingkaninan K. LC-ESI-QTOF-MS based screening and identification of isomeric jujubogenin and pseudojujubogenin aglycones in Bacopa monnieri extract. J Pharm Biomed Anal. 2016;129:121–34. https://doi.org/10.1016/j.jpba.2016.06.052.

    Article  CAS  PubMed  Google Scholar 

  13. Marquet P, Venisse N, Lacassie É, Lachâtre G. Up-front CID CID mass spectral libraries for the “general unknown” screening of drugs and toxicants. Analysis. 2000;28:925–34. https://doi.org/10.1051/analusis:2000280925.

    Article  CAS  Google Scholar 

  14. Fang P, Liu M, Xue Y, Yao J, Zhang Y, Shen H, et al. Controlling nonspecific trypsin cleavages in LC-MS/MS-based shotgun proteomics using optimized experimental conditions. Analyst. 2015;140:7613–21. https://doi.org/10.1039/C5AN01505G.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y-F, Lu W, Rabinowitz JD. Avoiding misannotation of up-front CID fragmentation products as cellular metabolites in liquid chromatography–mass spectrometry-based metabolomics. Anal Chem. 2015;87:2273–81. https://doi.org/10.1021/ac504118y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loo JA, Udseth HR, Smith RD, Futrell JH. Collisional effects on the charge distribution of ions from large molecules, formed by electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:207–10. https://doi.org/10.1002/rcm.1290021006.

    Article  CAS  Google Scholar 

  17. Weinmann W, Stoertzel M, Vogt S, Wendt J. Tune compounds for electrospray ionisation/up-front CID collision-induced dissociation with mass spectral library searching. J Chromatogr A. 2001;926:199–209. https://doi.org/10.1016/S0021-9673(01)01066-4.

    Article  CAS  PubMed  Google Scholar 

  18. Puchalska P, Luisa Marina M, Concepción García M. Development of a high-performance liquid chromatography–electrospray ionization-quadrupole-time-of-flight-mass spectrometry methodology for the determination of three highly antihypertensive peptides in maize crops. J Chromatogr A. 2013;1285:69–77. https://doi.org/10.1016/j.chroma.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  19. DeMuth JC, Bu J, McLuckey SA. Electrospray droplet exposure to polar vapors: delayed desolvation of protein complexes. Rapid Commun Mass Spectrom. 2015;29:973–81. https://doi.org/10.1002/rcm.7188.

    Article  CAS  PubMed  Google Scholar 

  20. Lemaire D, Marie G, Serani L, Laprévote O. Stabilization of gas-phase noncovalent macromolecular complexes in electrospray mass spectrometry using aqueous triethylammonium bicarbonate buffer. Anal Chem. 2001;73:1699–706. https://doi.org/10.1021/AC001276S.

    Article  CAS  PubMed  Google Scholar 

  21. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem. 2010;82:1867–80. https://doi.org/10.1021/ac902571u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eiceman G, Krylov E, Krylova NS, Nazarov EG, Miller RA. Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem. 2004;76:4937–44. https://doi.org/10.1021/AC035502K.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider BB, Nazarov EG, Covey TR. Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers. Int J Ion Mobil Spectrom. 2012;15:141–50. https://doi.org/10.1007/s12127-012-0098-9.

    Article  CAS  Google Scholar 

  24. Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK. Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal Chem. 2011;83:3470–6. https://doi.org/10.1021/ac200100s.

    Article  CAS  PubMed  Google Scholar 

  25. W.M. Haynes, ed., Molecular structure and spectroscopy, in: CRC Handb. Chem. Phys., 97th ed., CRC Press/Taylor & Francis, Boca Raton, 2017.

  26. Zhu S, Campbell JL, Chernushevich I, Le Blanc JCY, Wilson DJ. Differential mobility spectrometry-hydrogen deuterium exchange (DMS-HDX) as a probe of protein conformation in solution. J Am Soc Mass Spectrom. 2016;27:991–9. https://doi.org/10.1007/s13361-016-1364-6.

    Article  CAS  PubMed  Google Scholar 

  27. Kendler S, Lambertus GR, Dunietz BD, Coy SL, Nazarov EG, Miller RA, et al. Fragmentation pathways and mechanisms of aromatic compounds in atmospheric pressure studied by GC–DMS and DMS–MS. Int J Mass Spectrom. 2007;263:137–47. https://doi.org/10.1016/j.ijms.2007.01.011.

    Article  CAS  Google Scholar 

  28. Beach DG. Differential mobility spectrometry for improved selectivity in hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of paralytic shellfish toxins. J Am Soc Mass Spectrom. 2017;28:1538–0. https://doi.org/10.1007/s13361-017-1651-x.

    Article  CAS  Google Scholar 

  29. Schneider BB, Covey TR, Nazarov EG. DMS-MS separations with different transport gas modifiers. Int J Ion Mobil Spectrom. 2013;16:207–16. https://doi.org/10.1007/s12127-013-0130-8.

    Article  CAS  Google Scholar 

  30. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717. https://doi.org/10.1074/mcp.O111.016717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Larry Campbell (SCIEX, Concord, ON) for fruitful discussions. BS thanks the Natural Sciences and Engineering Research Council of Canada (NSERC), specifically the CREATE MS-ESE training program and Professor Derek Wilson (York University, Toronto, ON) for funding. BS also thanks the province of Ontario for an Ontario Graduate Scholarship (OGS). BS thanks Aaron Wheeler (University of Toronto, Toronto, ON) for discussion and support as his PhD supervisor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yves Le Blanc.

Ethics declarations

No biological material was used in the present work.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Close-Up of Current Developments in Ion Mobility Spectrometry with guest editor Gérard Hopfgartner.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seale, B., Schneider, B.B. & Le Blanc, J.C.Y. Enhancing signal and mitigating up-front peptide fragmentation using controlled clustering by gas-phase modifiers. Anal Bioanal Chem 411, 6365–6376 (2019). https://doi.org/10.1007/s00216-019-02036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02036-1

Keywords

Navigation