Skip to main content
Log in

Site-specific peak intensity ratio (SPIR) from 1D 2H/1H NMR spectra for rapid distinction between natural and synthetic nicotine and detection of possible adulteration

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

1H and 2H NMR spectra of 4 natural and synthetic nicotine samples were collected in a non-quantitative way and site-specific 2H/1H peak intensity ratio (SPIR) was calculated for 12 distinct sites of nicotine. Experimental results illustrated that the SPIRs at sites of 6, 2′, and 5′β of natural nicotine were significantly different from those of the synthetic nicotine, and could be used for nicotine authentication as the measured SPIRs were indicative of the site-specific natural isotope fractionation. We demonstrated that this method could be applied to detect adulteration of natural nicotine with as low as 20% synthetic nicotine, without the need to measure the site-specific δD values, which usually required time-consuming quantitative 2H NMR and additional IRMS for the overall 2H/1H isotopic ratio determination. The distinguishable 2H/1H SPIRs of nicotine, which can be quickly measured by NMR in non-quantitative way, can serve as an attractive alternative tool for tobacco authentication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brenna JT, Corso TN, Tobias HJ, Caimi RJ. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev. 1997;16(6):382. https://doi.org/10.1002/(SICI)1098-2787(1997)16:5<227::AID-MAS1>3.0.CO;2-J.

    Article  Google Scholar 

  2. Hilkert AW, Douthitt CB, Schlüter HJ, Brand WA. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(13):1226–30. https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1226::AID-RCM575>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  3. Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A. 1999;842(1–2):351–71. https://doi.org/10.1016/S0021-9673(98)01057-7.

    Article  CAS  PubMed  Google Scholar 

  4. Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134(2):213–22. https://doi.org/10.1039/B808232D.

    Article  CAS  Google Scholar 

  5. Tea I, Tcherkez G. Natural isotope abundance in metabolites: techniques and kinetic isotope effect measurement in plant, animal, and human tissues. Methods Enzymol. 2017;596:113–47. https://doi.org/10.1016/bs.mie.2017.07.020.

    Article  CAS  PubMed  Google Scholar 

  6. Martin GJ, Martin ML. Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett. 1981;22(36):3525–8. https://doi.org/10.1016/S0040-4039(01)81948-1.

    Article  CAS  Google Scholar 

  7. Remaud GS, Martin YL, Martin GG, Martin GJ. Detection of sophisticated adulterations of natural vanilla flavors and extracts: application of the SNIF-NMR method to vanillin and p-hydroxybenzaldehyde. J Agric Food Chem. 1997;45(3):859–66. https://doi.org/10.1021/jf960518f.

    Article  CAS  Google Scholar 

  8. Toulemonde B, Horman I, Egli H, Derbesy M. Food-related applications of high-resolution NMR. Part II. Differentiation between natural and synthetic vanillin samples using 2H-NMR. Helv Chim Acta. 1983;66(7):2342–5. https://doi.org/10.1002/hlca.19830660745.

    Article  CAS  Google Scholar 

  9. Martin GJ. Multisite and multicomponent approach for the stable isotope analysis of aromas and essential oils. Acs Symp Ser. 1995;596:79–93. https://doi.org/10.1021/bk-1995-0596.ch008.

    Article  CAS  Google Scholar 

  10. Remaud GS, Debon AA, Martin Y, Martin GG, Martin GJ. Authentication of bitter almond oil and cinnamon oil: application of the SNIF-NMR method to benzaldehyde. J Agric Food Chem. 1997;45(10):4042–8. https://doi.org/10.1021/jf970143d.

    Article  CAS  Google Scholar 

  11. Martin GJ, Koziet J, Rossmann A, Dennis J. Site-specific natural isotópe fractionation in fruit juices determined by deuterium NMR an European inter-laboratory comparison study. Anal Chim Acta. 1996;321(2):137–46. https://doi.org/10.1016/0003-2670(95)00568-4.

    Article  CAS  Google Scholar 

  12. Martin GJ, Martin ML. The site-specific natural isotope fractionation-NMR method applied to the study of wines. In: Linskens H-F, Jackson JF, editors. Wine analysis. Modern Methods of Plant Analysis, vol. 6. Berlin: Springer; 1988. p. 258–75. https://doi.org/10.1007/978-3-642-83340-3_9.

    Chapter  Google Scholar 

  13. Martin GJ, Akoka S, Martin ML. SNIF-NMR—part 1: principles. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2006. p. 1651–8. https://doi.org/10.1007/978-3-319-28388-3.

    Chapter  Google Scholar 

  14. Shoji T, Hashimoto T. Biosynthesis and regulation of tobacco alkaloids. In: Wallner F, editor. Herbaceous plants: cultivation methods, grazing and enviromental impacts. New York: Nova Biomedical; 2013. p. 37–67.

    Google Scholar 

  15. Jamin E, Naulet N, Martin G. Multi-element and multi-site isotopic analysis of nicotine from tobacco leaves. Plant Cell Environ. 1997;20:589–99. https://doi.org/10.1111/j.1365-3040.1997.00099.x.

    Article  CAS  Google Scholar 

  16. Chambers RP, Call GB, Meyer D, Smith J, Techau JA, Pearman K, et al. Nicotine increases lifespan and rescues olfactory and motor deficits in a Drosophila model of Parkinson’s disease. Behav Brain Res. 2013;253:95–102. https://doi.org/10.1016/j.bbr.2013.07.020.

    Article  CAS  PubMed  Google Scholar 

  17. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA. Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol. 2009;78(7):677–85. https://doi.org/10.1016/j.bcp.2009.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanberg PR, Silver AA, Shytle RD, Philipp MK, Cahill DW, Fogelson HM, et al. Nicotine for the treatment of Tourette’s syndrome. Pharmacol Ther. 1997;74(1):21–5. https://doi.org/10.1016/S0163-7258(96)00199-4.

    Article  CAS  PubMed  Google Scholar 

  19. Holladay MW, Lebold SA, Lin NH. Structure-activity relationships of nicotinic acetylcholine receptor agonists as potential treatments for dementia. Drug Dev Res. 1995;35:191–213. https://doi.org/10.1002/ddr.430350402.

    Article  CAS  Google Scholar 

  20. Djordjevic MV, Doran KA. Nicotine content and delivery across tobacco products. In: Henningfield JE, London ED, Pogun S, editors. Nicotine psychopharmacology. Handbook of Experimental Pharmacology, vol. 192. Berlin: Springer; 2009. p. 61–82. https://doi.org/10.1007/978-3-540-69248-5_3.

    Chapter  Google Scholar 

  21. Girard S, Robins RJ, Villiéras J, Lebreton J. A short and efficient synthesis of unnatural (R)-nicotine. Tetrahedron Lett. 2000;41(48):9245–9. https://doi.org/10.1016/S0040-4039(00)01675-0.

    Article  CAS  Google Scholar 

  22. Welter C, Moreno RM, Streiff S, Helmchen G. Enantioselective synthesis of (+)(R)- and (−)(S)-nicotine based on Ir-catalysed allylic amination. Org Biomol Chem. 2005;3(18):3266–8. https://doi.org/10.1039/B508634E.

    Article  CAS  PubMed  Google Scholar 

  23. Willcott MR. MestRe Nova. J Am Chem Soc. 2009;131(36):13180. https://doi.org/10.1021/ja906709t.

    Article  CAS  Google Scholar 

  24. Hu K, Westler WM, Markley JL. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H−13C HSQC (HSQC0). J Am Chem Soc. 2011;133(6):1662–5. https://doi.org/10.1021/ja1095304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Hu K. Quantitative NMR studies of multiple compound mixtures. Annu Rep Nmr Spectrosc. 2017;90:85–143. https://doi.org/10.1016/bs.arnmr.2016.08.001.

    Article  CAS  Google Scholar 

  26. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006;20(8–10):341–51. https://doi.org/10.1002/cem.1006.

    Article  CAS  Google Scholar 

  27. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metaboliteprofiling using nonlinear peakalignment, matching, and identification. Anal Chem. 2006;78(3):779–87. https://doi.org/10.1021/ac051437y.

    Article  CAS  PubMed  Google Scholar 

  28. Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites. 2012;2(4):775–95. https://doi.org/10.3390/metabo2040775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 1996;47(1):185–214. https://doi.org/10.1146/annurev.arplant.47.1.185.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang BL, Quemerais B, Martin ML, Martin GJ, Williams JM. Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochem Anal. 1994;5:105–10. https://doi.org/10.1002/pca.2800050304.

    Article  Google Scholar 

  31. Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, et al. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol. 1998;38(6):1101–11. https://doi.org/10.1023/A:1006058700949.

    Article  CAS  PubMed  Google Scholar 

  32. Sandmeier E, Hale T, Christen P. Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur J Biochem. 1994;221:997–1002. https://doi.org/10.1111/j.1432-1033.1994.tb18816.x.

    Article  CAS  PubMed  Google Scholar 

  33. Whidby JF, Seeman J. The configuration of nicotine. A nuclear magnetic resonance study. J Org Chem. 1976;41:1585–90. https://doi.org/10.1021/jo00871a022.

    Article  CAS  PubMed  Google Scholar 

  34. Huang K, Ortiz-Marciales M, De Jesús M, Stepanenko V. A new and efficient approach to the synthesis of nicotine and anabasine analogues. J Heterocyclic Chem. 2009;46(6):1252–8. https://doi.org/10.1002/jhet.233.

    Article  CAS  Google Scholar 

  35. Limbach HH. Dynamic nmr spectroscopy in the presence of kinetic hydrogen/deuterium isotope effects. In: Deuterium and shift calculation. NMR Basic Principles and Progress, vol 23. Deuterium and Shift Calculation. Berlin: Springer; 1990. p. 63–164. https://doi.org/10.1007/978-3-642-75932-1_2.

    Chapter  Google Scholar 

  36. Kendall C, Caldwell EA. Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ, editors. Isotope tracers in catchment hydrology. Amsterdam: Elsevier; 1998. p. 51–86. https://doi.org/10.1016/B978-0-444-81546-0.50009-4.

    Chapter  Google Scholar 

  37. Maggi F, Riley WJ. Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics. Geochim Cosmochim Acta. 2010;74(6):1823–35. https://doi.org/10.1016/j.gca.2009.12.021.

    Article  CAS  Google Scholar 

  38. Urey HC. The thermodynamic properties of isotopic substances. J Chem Soc. 1947:562–81. https://doi.org/10.1039/jr9470000562.

  39. Chacko T, Horita DRC. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem. 2001;43:1–81. https://doi.org/10.2138/rmg.2016.81.00.

    Article  CAS  Google Scholar 

  40. Galindo-Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J Chemom. 2014;28(8):623–32. https://doi.org/10.1002/cem.2627.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Yaning Fu for providing the nicotine samples.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2017YFC0906900), the National Natural Science Foundation of China (Nos. 21573258, 21505142), and Yunnan Provincial Science and Technology Department (No. 2015FA028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifeng Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Chen, Y., Ma, X. et al. Site-specific peak intensity ratio (SPIR) from 1D 2H/1H NMR spectra for rapid distinction between natural and synthetic nicotine and detection of possible adulteration. Anal Bioanal Chem 411, 6427–6434 (2019). https://doi.org/10.1007/s00216-019-02023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02023-6

Keywords

Navigation