Skip to main content

Advertisement

Log in

Highly sensitive immunodiagnostics at the point of care employing alternative recognition elements and smartphones: hype, trend, or revolution?

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immunodiagnostic tests performed at the point of care (POC) today usually employ antibodies for biorecognition and are read out either visually or with specialized equipment. Availability of alternative biorecognition elements with promising features as well as smartphone-based approaches for signal readout, however, challenge the described established configuration in terms of analytical performance and practicability. Assessing these developments’ clinical relevance and their impact on POC immunodiagnostics is demanding. The first part of this review will therefore give an overview on suitable diagnostic biosensors based on alternative recognition elements (such as nucleic acid-based aptamers or engineered binding proteins) and exemplify advantages and drawbacks of these biomolecules on the base of selected assays. The second part of the review then focuses on smartphone-connected diagnostics and discusses the indispensable considerations required for successful future clinical POCT implementation. Together, the joint depiction of two of the most innovative and exciting developments in the field will enable the reader to cast a glance into the distant future of POC immunodiagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Ab:

Antibody

CBP:

Calcium-binding protein

CLIP:

Combinatorial library of improved peptide

DARPins:

Designed ankyrin repeat proteins

IVD:

In vitro diagnostics

LFA:

Lateral flow immunoassays

LFD:

Lateral flow device

MW:

Molecular weight

MIP:

Molecular imprinted polymer

SAW:

Surface acoustic wave

SELEX:

Systematic evolution of ligands by exponential enrichment

SPR:

Surface plasmon resonance

References

  1. Ko Ferrigno P. Non-antibody protein-based biosensors. Essays Biochem. 2016;60(1):19–25. https://doi.org/10.1042/EBC20150003.

    Article  PubMed  Google Scholar 

  2. Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–9. https://doi.org/10.1038/518027a.

    Article  CAS  PubMed  Google Scholar 

  3. Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotech Adv. 2016;34(3):139–60. https://doi.org/10.1016/j.biotechadv.2016.01.003.

    Article  Google Scholar 

  4. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705. https://doi.org/10.1016/j.tibtech.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  5. Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015;71:230–42. https://doi.org/10.1016/j.bios.2015.04.041.

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Chen GY. Current conjugation methods for immunosensors. Nanomaterials (Basel). 2018;8(5). https://doi.org/10.3390/nano8050278.

    Article  Google Scholar 

  7. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. https://doi.org/10.1038/346818a0.

    Article  CAS  PubMed  Google Scholar 

  8. Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal Chem. 2011;83(12):4440–52. https://doi.org/10.1021/ac201057w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines - a review. Anal Chim ASepcta. 2015;853:95–115. https://doi.org/10.1016/j.aca.2014.10.009.

    Article  CAS  Google Scholar 

  10. Gopinath SC, Lakshmipriya T, Chen Y, Phang WM, Hashim U. Aptamer-based 'point-of-care testing'. Biotech Adv. 2016;34(3):198–208. https://doi.org/10.1016/j.biotechadv.2016.02.003.

    Article  CAS  Google Scholar 

  11. Nery AA, Wrenger C, Ulrich H. Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J Sep Sci. 2009;32(10):1523–30. https://doi.org/10.1002/jssc.200800695.

    Article  CAS  PubMed  Google Scholar 

  12. Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43(1):48–57. https://doi.org/10.1021/ar900101s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guthrie JW, Hamula CL, Zhang H, Le XC. Assays for cytokines using aptamers. Methods. 2006;38(4):324–30. https://doi.org/10.1016/j.ymeth.2006.01.001.

    Article  CAS  PubMed  Google Scholar 

  14. Nezlin R. Use of aptamers in immunoassays. Mol Immunol. 2016;70:149–54. https://doi.org/10.1016/j.molimm.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  15. Seo HB, Gu MB. Aptamer-based sandwich-type biosensors. J Biol Eng. 2017;11:11. https://doi.org/10.1186/s13036-017-0054-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zainol Abidin AS, Rahim RA, Md Arshad MK, Fatin Nabilah MF, Voon CH, Tang TH, et al. Current and potential developments of cortisol aptasensing towards point-of-care diagnostics (POCT). Sensors (Basel). 2017;17(5). https://doi.org/10.3390/s17051180.

    Article  Google Scholar 

  17. Sanghavi BJ, Moore JA, Chavez JL, Hagen JA, Kelley-Loughnane N, Chou CF, et al. Aptamer-functionalized nanoparticles for surface immobilization-free electro-chemical detection of cortisol in a microfluidic device. Biosens Bioelectron. 2016;78:244–52. https://doi.org/10.1016/j.bios.2015.11.044.

    Article  CAS  PubMed  Google Scholar 

  18. Bruno JG. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens. 2014;3(2):341–55. https://doi.org/10.3390/pathogens3020341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst. 2018;143(7):1526–43. https://doi.org/10.1039/c8an00081f.

    Article  CAS  PubMed  Google Scholar 

  20. Sze JYY, Ivanov AP, Cass AEG, Edel JB. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat Commun. 2017;8(1):1552. https://doi.org/10.1038/s41467-017-01584-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Binz HK, Amstutz P, Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol. 2005;23(10):1257–68. https://doi.org/10.1038/nbt1127.

    Article  CAS  PubMed  Google Scholar 

  22. Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, et al. Non-immunoglobulin scaffold proteins: precision tools for studying protein-protein interactions in cancer. New Biotechnol. 2018;45:28–35. https://doi.org/10.1016/j.nbt.2018.02.008.

    Article  CAS  Google Scholar 

  23. Reverdatto S, Burz DS, Shekhtman A. Peptide aptamers: development and applications. Curr Top Med Chem. 2015;15(12):1082–101.

    Article  CAS  Google Scholar 

  24. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 1996;380(6574):548–50. https://doi.org/10.1038/380548a0.

    Article  CAS  PubMed  Google Scholar 

  25. Reverdatto S, Rai V, Xue J, Burz DS, Schmidt AM, Shekhtman A. Combinatorial library of improved peptide aptamers, clips to inhibit rage signal transduction in mammalian cells. PLoS One. 2013;8(6):e65180. https://doi.org/10.1371/journal.pone.0065180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koide A, Koide S. Monobodies: antibody mimics based on the scaffold of the fibronectin type iii domain. Methods Mol Biol. 2007;352:95–109. https://doi.org/10.1385/1-59745-187-8:95.

    Article  CAS  PubMed  Google Scholar 

  27. Skerra A. Alternative binding proteins: anticalins - harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J. 2008;275(11):2677–83. https://doi.org/10.1111/j.1742-4658.2008.06439.x.

    Article  CAS  PubMed  Google Scholar 

  28. Richter A, Skerra A. Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol Chem. 2017;398(1):39–55. https://doi.org/10.1515/hsz-2016-0195.

    Article  CAS  PubMed  Google Scholar 

  29. Amstutz P, Koch H, Binz HK, Deuber SA, Plückthun A. Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng Des Sel. 2006;19(5):219–29. https://doi.org/10.1093/protein/gzl004.

    Article  CAS  PubMed  Google Scholar 

  30. Parizek P, Kummer L, Rube P, Prinz A, Herberg FW, Plückthun A. Designed ankyrin repeat proteins (DARPins) as novel isoform-specific intracellular inhibitors of c-Jun N-terminal kinases. ACS Chem Biol. 2012;7(8):1356–66. https://doi.org/10.1021/cb3001167.

    Article  CAS  PubMed  Google Scholar 

  31. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489–511. https://doi.org/10.1146/annurev-pharmtox-010611-134654.

    Article  CAS  PubMed  Google Scholar 

  32. Nord K, Nilsson J, Nilsson B, Uhlen M, Nygren PA. A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng. 1995;8(6):601–8.

    Article  CAS  Google Scholar 

  33. Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Stahl S, Frejd FY. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010;584(12):2670–80. https://doi.org/10.1016/j.febslet.2010.04.014.

    Article  CAS  PubMed  Google Scholar 

  34. Saylan Y, Akgonullu S, Yavuz H, Unal S, Denizli A. Molecularly imprinted polymer based sensors for medical applications. Sensors (Basel). 2019;19(6). https://doi.org/10.3390/s19061279.

    Article  Google Scholar 

  35. Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29(10):3231–9. https://doi.org/10.1021/acs.bioconjchem.8b00592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harmansa S, Affolter M. Protein binders and their applications in developmental biology. Development. 2018;145(2). https://doi.org/10.1242/dev.148874.

    Article  Google Scholar 

  37. Yu X, Yang YP, Dikici E, Deo SK, Daunert S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Ann Rev Anal Chem. 2017;10(1):293–320. https://doi.org/10.1146/annurev-anchem-061516-045205.

    Article  CAS  Google Scholar 

  38. Cerwall P, Lundvall A, Jonsson P, Carson S, Svenningsson R, Lindberg P, Öhman K, Sandin T, Rangel L, Karapantelakis A, Elmgren S, Wieweg L, Halen M, Edstam J, Queirós R, Muller F, Englund L (2018) Ericsson mobility report.

    Google Scholar 

  39. Reusche R, Buchanan PJ, Kozlow JH, Vercler CJ. A systematic review of smartphone applications for plastic surgery providers: target audience, uses, and cost. Ann Plas Surg. 2016;77(1):6–12. https://doi.org/10.1097/sap.0000000000000792.

    Article  CAS  Google Scholar 

  40. Jahanshir A, Karimialavijeh E, Sheikh H, Vahedi M, Momeni M. Smartphones and medical applications in the emergency department daily practice. Emergency. 2017;5(1):e14.

    PubMed  PubMed Central  Google Scholar 

  41. Valle J, Godby T, Paul DP, 3rd, Smith H, Coustasse A (2017) Use of smartphones for clinical and medical education. Health Care Manag 36 (3):293–300. doi:https://doi.org/10.1097/hcm.0000000000000176.

    Article  Google Scholar 

  42. Vashist SK, Luong JHT. Chapter 16 - smartphone-based immunoassays. In: Vashist SK, Luong JHT, editors. Handbook of immunoassay technologies: Academic Press; 2018. p. 433–53. https://doi.org/10.1016/B978-0-12-811762-0.00016-5.

    Chapter  Google Scholar 

  43. Xu X, Akay A, Wei H, Wang S, Pingguan-Murphy B, Erlandsson BE, et al. Advances in smartphone-based point-of-care diagnostics. Proc IEEE. 2015;103(2):236–47. https://doi.org/10.1109/JPROC.2014.2378776.

    Article  CAS  Google Scholar 

  44. Yang K, Peretz-Soroka H, Liu Y, Lin F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip. 2016;16(6):943–58. https://doi.org/10.1039/c5lc01524c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron. 2017;98:494–506. https://doi.org/10.1016/j.bios.2017.07.024.

    Article  CAS  PubMed  Google Scholar 

  46. Xu D, Huang X, Guo J, Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron. 2018;110:78–88. https://doi.org/10.1016/j.bios.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84. https://doi.org/10.1016/j.bios.2015.08.037.

    Article  CAS  PubMed  Google Scholar 

  48. Romeo A, Leung TS, Sanchez S. Smart biosensors for multiplexed and fully integrated point-of-care diagnostics. Lab Chip. 2016;16(11):1957–61. https://doi.org/10.1039/c6lc90046a.

    Article  CAS  PubMed  Google Scholar 

  49. Huang X, Xu D, Chen J, Liu J, Li Y, Song J, et al. Smartphone-based analytical biosensors. Analyst. 2018;143(22):5339–51. https://doi.org/10.1039/c8an01269e.

    Article  CAS  PubMed  Google Scholar 

  50. Park JN, Paek SH, Kim DH, Seo SM, Lim GS, Kang JH, et al. Conformation-sensitive antibody-based point-of-care immunosensor for serum ca(2+) using two-dimensional sequential binding reactions. Biosens Bioelectron. 2016;85:611–7. https://doi.org/10.1016/j.bios.2016.05.061.

    Article  CAS  PubMed  Google Scholar 

  51. Lee S, O'Dell D, Hohenstein J, Colt S, Mehta S, Erickson D. Nutriphone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci Rep. 2016;6:28237. https://doi.org/10.1038/srep28237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Srinivasan B, O'Dell D, Finkelstein JL, Lee S, Erickson D, Mehta S. Ironphone: mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens Bioelectron. 2018;99:115–21. https://doi.org/10.1016/j.bios.2017.07.038.

    Article  CAS  PubMed  Google Scholar 

  53. Paterson AS, Raja B, Mandadi V, Townsend B, Lee M, Buell A, et al. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip. 2017;17(6):1051–9. https://doi.org/10.1039/c6lc01167e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan Y, Liu J, Wang Y, Luo J, Xu H, Xu S, et al. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens Bioelectron. 2017;95:60–6. https://doi.org/10.1016/j.bios.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  55. Vashist SK, Schneider EM, Venkatesh AG, Luong JHT. Emerging human fetuin A assays for biomedical diagnostics. Trends Biotechnol. 2017;35(5):407–21. https://doi.org/10.1016/j.tibtech.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  56. Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55. https://doi.org/10.1016/j.bios.2014.08.027.

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep. 2015;5:12864. https://doi.org/10.1038/srep12864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Battaglia TM, Masson JF, Sierks MR, Beaudoin SP, Rogers J, Foster KN, et al. Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal Chem. 2005;77(21):7016–23. https://doi.org/10.1021/ac050568w.

    Article  CAS  PubMed  Google Scholar 

  59. Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS. Quantitative measurement of cardiac markers in undiluted serum. Anal Chem. 2007;79(2):612–9. https://doi.org/10.1021/ac061089f.

    Article  CAS  PubMed  Google Scholar 

  60. Ross GMS, Bremer M, Nielen MWF. Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Anal Bioanal Chem. 2018. https://doi.org/10.1007/s00216-018-0989-7.

    Article  CAS  Google Scholar 

  61. Bedin F, Boulet L, Voilin E, Theillet G, Rubens A, Rozand C. Paper-based point-of-care testing for cost-effective diagnosis of acute Flavivirus infections. J Med Virol. 2017;89(9):1520–7. https://doi.org/10.1002/jmv.24806.

    Article  CAS  PubMed  Google Scholar 

  62. Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, et al. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci Rep. 2018;8(1):9700. https://doi.org/10.1038/s41598-018-28035-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turbé V, Gray ER, Lawson VE, Nastouli E, Brookes JC, Weiss RA, et al. Towards an ultra-rapid smartphone- connected test for infectious diseases. Sci Rep. 2017;7(1):11971. https://doi.org/10.1038/s41598-017-11887-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang H, Wu D, Song L, Yuan Q, Ge S, Min X, et al. A smartphone-based genotyping method for hepatitis B virus at point-of-care settings. SLAS Technol. 2017;22(2):122–9. https://doi.org/10.1177/2211068216680163.

    Article  PubMed  Google Scholar 

  65. Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9(8):7857–66. https://doi.org/10.1021/acsnano.5b03203.

    Article  CAS  PubMed  Google Scholar 

  66. Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re271. https://doi.org/10.1126/scitranslmed.aaa0056.

    Article  Google Scholar 

  67. Herbst de Cortina S, Bristow CC, Humphries R, Vargas SK, Konda KA, Caceres CF, et al. Laboratory evaluation of a smartphone-based electronic reader of rapid dual point-of-care tests for antibodies to human immunodeficiency virus and Treponema pallidum infections. Sex Transm Dis. 2017;44(7):412–6. https://doi.org/10.1097/olq.0000000000000628.

    Article  PubMed  Google Scholar 

  68. Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM, et al. Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics. 2016;6(2):231–42. https://doi.org/10.7150/thno.14023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cho S, Park TS, Nahapetian TG, Yoon JY. Smartphone-based, sensitive micropad detection of urinary tract infection and gonorrhea. Biosens Bioelectron. 2015;74:601–11. https://doi.org/10.1016/j.bios.2015.07.014.

    Article  CAS  PubMed  Google Scholar 

  70. Lin B, Yu Y, Cao Y, Guo M, Zhu D, Dai J, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;15(100):482–9.

    Article  Google Scholar 

  71. Ganguli A, Ornob A, Yu H, Damhorst GL, Chen W, Sun F, et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices. 2017;19(4):73. https://doi.org/10.1007/s10544-017-0209-9.

    Article  CAS  PubMed  Google Scholar 

  72. Kotz D, Fu K, Gunter C, Rubin A. Security for mobile and cloud frontiers in healthcare. Commun ACM. 2015;58(8):21–3. https://doi.org/10.1145/2790830.

    Article  Google Scholar 

  73. Kolmar H, Skerra A. Alternative binding proteins get mature: rivalling antibodies. FEBS J. 2008;275(11):2667. https://doi.org/10.1111/j.1742-4658.2008.06437.x.

    Article  CAS  PubMed  Google Scholar 

  74. Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015;20(4):6866–87. https://doi.org/10.3390/molecules20046866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported in part by the European Commission (NANODEM, #318372) and the German Bundesministerium für Bildung und Forschung (Q-Flow, #13N13867; and KAREL, #13GW0154D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Luppa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection New Developments in Biosensors with guest editors Francesco Baldini and Maria Minunni.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaler, M., Luppa, P.B. Highly sensitive immunodiagnostics at the point of care employing alternative recognition elements and smartphones: hype, trend, or revolution?. Anal Bioanal Chem 411, 7623–7635 (2019). https://doi.org/10.1007/s00216-019-01974-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01974-0

Keywords

Navigation