Skip to main content
Log in

Advancing MSn spatial resolution and documentation for glycosaminoglycans by sulfate-isotope exchange

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycosaminoglycans (GAGs) are carbohydrate polyionic polymers that participate in a host of critically important biological processes. A significant difficulty in the comprehensive structural characterization of GAGs is the determination of specific sulfation position isomers. We chose to circumvent sulfate lability by its liberation followed by specific isotope exchange that makes it amenable to methylation, collisional induced dissociation, and MSn disassembly for a detailed structural characterization. A set of chemistries that include sulfate release, isotopic (CD3– and CD3–CO–) replacement, and methylation have been modified to yield a stable product ideal for sequencing by MSn. Disassembly of these samples provides a detailed read-out of sequence inclusive of all sulfation sites. As documenting steps, we applied these chemical modifications to a series of disaccharides and a synthetic GAG pentamer, Arixtra®. Upon disassembly, glycosidic and cross-ring cleavages define the monomer composition including individual sulfation positions. The N- and O-sulfates are differentiated by deuterium-containing mass compositions. The uronic methylesters do not significantly alter the fragmentation patterns. A fragment library of these products is being assembled as an adjunct to our larger fragment library, some 15 years in the making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pomin VH, Bezerra FF, Soares PAG. Sulfated glycans in HIV infection and therapy. Curr Pharm Des. 2017;23(23):3405–14. https://doi.org/10.2174/1381612823666170127113958.

    Article  CAS  PubMed  Google Scholar 

  2. Kadomatsu K, Sakamoto K. Sulfated glycans in network rewiring and plasticity after neuronal injuries. Neurosci Res. 2014;78:50–4. https://doi.org/10.1016/j.neures.2013.10.005.

    Article  CAS  PubMed  Google Scholar 

  3. Varki A, Kannagi R, Toole BP. Glycosylation changes in cancer. New York: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  4. Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr Opin Struct Biol. 2001;11(5):629–34. https://doi.org/10.1016/S0959-440X(00)00258-X.

    Article  CAS  PubMed  Google Scholar 

  5. Afratis NA, Karamanou K, Piperigkou Z, Vynios DH, Theocharis AD. The role of heparins and nano-heparins as therapeutic tool in breast cancer. Glycoconj J. 2017;34(3):299–307. https://doi.org/10.1007/s10719-016-9742-7.

    Article  CAS  PubMed  Google Scholar 

  6. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012;279(7):1177–97. https://doi.org/10.1111/j.1742-4658.2012.08529.x.

    Article  CAS  PubMed  Google Scholar 

  7. Kreuger J, Spillmann D, Li J-p, Lindahl U. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol. 2006;174(3):323–7. https://doi.org/10.1083/jcb.200604035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Yang B, Ly M, Solakyildirim K, Xiao Z, Wang Z, et al. Structural characterization of heparins from different commercial sources. Anal Bioanal Chem. 2011;401(9):2793–803. https://doi.org/10.1007/s00216-011-5367-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zaia J, Costello CE. Tandem mass spectrometry of sulfated heparin-like glycosaminoglycan oligosaccharides. Anal Chem. 2003;75(10):2445–55. https://doi.org/10.1021/ac0263418.

    Article  CAS  PubMed  Google Scholar 

  10. Naggar EF, Costello CE, Zaia J. Competing fragmentation processes in tandem mass spectra of heparin-like glycosaminoglycans. J Am Soc Mass Spectrom. 2004;15(11):1534–44. https://doi.org/10.1016/j.jasms.2004.06.019.

    Article  CAS  PubMed  Google Scholar 

  11. Kailemia MJ, Patel AB, Johnson DT, Li L, Linhardt RJ, Amster IJ. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry. Eur J Mass Spectrom. 2015;21(3):275–85. https://doi.org/10.1255/ejms.1366.

    Article  CAS  Google Scholar 

  12. Kailemia MJ, Li L, Ly M, Linhardt RJ, Amster IJ. Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal Chem. 2012;84(13):5475–8. https://doi.org/10.1021/ac3015824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor CJ, Burke RM, Wu B, Panja S, Nielsen SB, Dessent CEH. Structural characterization of negatively charged glycosaminoglycans using high-energy (50–150 keV) collisional activation. Int J Mass Spectrom. 2009;285(1–2):70–7. https://doi.org/10.1016/j.ijms.2009.04.009.

    Article  CAS  Google Scholar 

  14. Kailemia MJ, Li L, Xu Y, Liu J, Linhardt RJ, Amster IJ. Structurally informative tandem mass spectrometry of highly sulfated natural and chemoenzymatically synthesized heparin and heparan sulfate glycosaminoglycans. Mol Cell Proteomics. 2013;12(4):979–90. https://doi.org/10.1074/mcp.M112.026880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bielik AM, Zaia J. Multistage tandem mass spectrometry of chondroitin sulfate and dermatan sulfate. Int J Mass Spectrom. 2011;305(2–3):131–7. https://doi.org/10.1016/j.ijms.2010.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolff JJ, Laremore TN, Busch AM, Linhardt RJ, Amster IJ. Electron detachment dissociation of dermatan sulfate oligosaccharides. J Am Soc Mass Spectrom. 2008;19(2):294–304. https://doi.org/10.1016/j.jasms.2007.10.007.

    Article  CAS  PubMed  Google Scholar 

  17. Wolff JJ, Laremore TN, Busch AM, Linhardt RJ, Amster IJ. Influence of charge state and sodium cationization on the electron detachment dissociation and infrared multiphoton dissociation of glycosaminoglycan oligosaccharides. J Am Soc Mass Spectrom. 2008;19(6):790–8. https://doi.org/10.1016/j.jasms.2008.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leach FE, Xiao Z, Laremore TN, Linhardt RJ, Amster IJ. Electron detachment dissociation and infrared multiphoton dissociation of heparin tetrasaccharides. Int J Mass Spectrom. 2011;308(2):253–9. https://doi.org/10.1016/j.ijms.2011.08.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leach FE, Wolff JJ, Laremore TN, Linhardt RJ, Amster IJ. Evaluation of the experimental parameters which control electron detachment dissociation, and their effect on the fragmentation efficiency of glycosaminoglycan carbohydrates. Int J Mass Spectrom. 2008;276(2):110–5. https://doi.org/10.1016/j.ijms.2008.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leach FE 3rd, Riley NM, Westphall MS, Coon JJ, Amster IJ. Negative electron transfer dissociation sequencing of increasingly sulfated glycosaminoglycan oligosaccharides on an Orbitrap mass spectrometer. J Am Soc Mass Spectrom. 2017. https://doi.org/10.1007/s13361-017-1709-9.

  21. Franklin E, Leach I, Wolff JJ, Xiao Z, Ly M, Laremore TN, et al. Negative electron transfer dissociation Fourier transform mass spectrometry of glycosaminoglycan carbohydrates. Eur J Mass Spectrom. 2011;17(2):167–76. https://doi.org/10.1255/ejms.1120.

    Article  CAS  Google Scholar 

  22. Wu J, Wei J, Hogan JD, Chopra P, Joshi A, Lu W, et al. Negative electron transfer dissociation sequencing of 3-O-sulfation-containing heparan sulfate oligosaccharides. J Am Soc Mass Spectrom. 2018;29(6):1262–72. https://doi.org/10.1007/s13361-018-1907-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang R, Zong C, Venot A, Chiu Y, Zhou D, Boons G-J, et al. De novo sequencing of complex mixtures of heparan sulfate oligosaccharides. Anal Chem. 2016;88(10):5299–307. https://doi.org/10.1021/acs.analchem.6b00519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang R, Pomin VH, Sharp JS. LC-MS(n) analysis of isomeric chondroitin sulfate oligosaccharides using a chemical derivatization strategy. J Am Soc Mass Spectrom. 2011;22(9):1577–87.

    Article  CAS  Google Scholar 

  25. Huang R, Liu J, Sharp JS. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides. Anal Chem. 2013;85(12):5787–95. https://doi.org/10.1021/ac400439a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang Q, Chopra P, Boons G-J, Sharp JS. Improved de novo sequencing of heparin/heparan sulfate oligosaccharides by propionylation of sites of sulfation. Carbohydr Res. 2018;465:16–21. https://doi.org/10.1016/j.carres.2018.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin L, Liu X, Zhang F, Chi L, Amster IJ, Leach FE, et al. Analysis of heparin oligosaccharides by capillary electrophoresis-negative-ion electrospray ionization mass spectrometry. Anal Bioanal Chem. 2017;409(2):411–20. https://doi.org/10.1007/s00216-016-9662-1.

    Article  CAS  PubMed  Google Scholar 

  28. Salomé P, Chrystel L-B, Jean-Claude J, Jean-Yves S, Régis D. Isomer separation and effect of the degree of polymerization on the gas-phase structure of chondroitin sulfate oligosaccharides analyzed by ion mobility and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(23):2003–10. https://doi.org/10.1002/rcm.7987.

    Article  CAS  Google Scholar 

  29. Renois-Predelus G, Schindler B, Compagnon I. Analysis of sulfate patterns in glycosaminoglycan oligosaccharides by MSn coupled to infrared ion spectroscopy: the case of GalNAc4S and GalNAc6S. J Am Soc Mass Spectrom. 2018;29(6):1242–9. https://doi.org/10.1007/s13361-018-1955-5.

    Article  CAS  PubMed  Google Scholar 

  30. Reinhold BB, Reinhold VN. Characterization of glycosyl-phosphatidyl-inositol (GPI) anchors by electrospray ionization and collision induced dissociation. Nippon Iyo Masu Supekutoru Gakkai Koenshu. 1992;17:117–29.

    CAS  Google Scholar 

  31. Redman CA, Green BN, Thomas-Oates JE, Reinhold VN, Ferguson MAJ. Analysis of glycosylphosphatidylinositol membrane anchors by electrospray ionization-mass spectrometry and collision induced dissociation. Glycoconj J. 1994;11(3):187–93. https://doi.org/10.1007/BF00731217.

    Article  CAS  PubMed  Google Scholar 

  32. Chan S, Reinhold VN. Detailed structural characterization of lipid A: electrospray ionization coupled with tandem mass spectrometry. Anal Biochem. 1994;218(1):63–73. https://doi.org/10.1006/abio.1994.1141.

    Article  CAS  PubMed  Google Scholar 

  33. Ashline DJ, Duk M, Lukasiewicz J, Reinhold VN, Lisowska E, Jaskiewicz E. The structures of glycophorin C N-glycans, a putative component of the GPC receptor site for Plasmodium falciparum EBA-140 ligand. Glycobiology. 2015;25(5):570–81. https://doi.org/10.1093/glycob/cwu188.

    Article  CAS  PubMed  Google Scholar 

  34. Ashline DJ, Yu Y, Lasanajak Y, Song X, Hu L, Ramani S, et al. Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses. Mol Cell Proteomics. 2014;13(11):2961–74. https://doi.org/10.1074/mcp.M114.039925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashline DJ, Zhang H, Reinhold VN. Isomeric complexity of glycosylation documented by MSn. Anal Bioanal Chem. 2017;409(2):439–51. https://doi.org/10.1007/s00216-016-0018-7.

    Article  CAS  PubMed  Google Scholar 

  36. Ashline D, Singh S, Hanneman A, Reinhold V. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem. 2005;77(19):6250–62. https://doi.org/10.1021/ac050724z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashline DJ, Lapadula AJ, Liu YH, Lin M, Grace M, Pramanik B, et al. Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem. 2007;79(10):3830–42. https://doi.org/10.1021/ac062383a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo Q. Development of an isotopic approach for detailing heparin sequences [Doctoral Dissertations]: University of New Hampshire; 2015.

  39. Heiss C, Wang Z, Azadi P. Sodium hydroxide permethylation of heparin disaccharides. Rapid Commun Mass Spectrom. 2011;25(6):774–8. https://doi.org/10.1002/rcm.4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anumula KR, Taylor PB. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal Biochem. 1992;203(1):101–8. https://doi.org/10.1016/0003-2697(92)90048-C.

    Article  CAS  PubMed  Google Scholar 

  41. Nagasawa K, Inoue Y, Kamata T. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol. Carbohydr Res. 1977;58(1):47–55. https://doi.org/10.1016/S0008-6215(00)83402-3.

    Article  CAS  PubMed  Google Scholar 

  42. Hammad LA, Derryberry DZ, Jmeian YR, Mechref Y. Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column. Rapid Commun Mass Spectrom. 2010;24(11):1565–74. https://doi.org/10.1002/rcm.4536.

    Article  CAS  PubMed  Google Scholar 

  43. Stevenson TT, Furneaux RH. Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr Res. 1991;210:277–98.

    Article  CAS  Google Scholar 

  44. Langeslay DJ, Young RP, Beni S, Beecher CN, Mueller LJ, Larive CK. Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology. 2012;22(9):1173–82. https://doi.org/10.1093/glycob/cws085.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Cancer Institute of National Institutes of Health (USA) through the Common Fund of Glycoscience (U01CA221215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon N. Reinhold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Reinhold, V.N. Advancing MSn spatial resolution and documentation for glycosaminoglycans by sulfate-isotope exchange. Anal Bioanal Chem 411, 5033–5045 (2019). https://doi.org/10.1007/s00216-019-01899-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01899-8

Keywords

Navigation