Skip to main content
Log in

Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP) conjugated gluten-specific antibodies (G12, R5, 2D4, MIoBS, and Skerritt), from nine commercial gluten ELISA test kits, previously utilized in the development of a multiplex competitive ELISA for the detection of fermented-hydrolyzed gluten, were utilized in western blot analyses of 59 fermented-hydrolyzed foods from four food groups (beer, soy-based sauces, vinegar, and sourdough bread). The protein/peptide profiles generated by the nine gluten-specific antibodies varied in size distribution and intensity dependent on the type of food, with minor differences between related products. Cluster analysis of the estimated gluten concentration values (based on western blot band intensities relative to intact gluten standards at 2.5 μg/mL and 100 μg/mL) and that of the relative response of the nine gluten-specific antibodies to different gluten proteins/peptides, distinguished among the different categories of fermented-hydrolyzed foods; comparable to what was observed in the multiplex competitive ELISA. Further, unlike the competitive ELISA, the western blot analyses distinguished between the presence of antigenic proteinaceous materials and false positives due to the presence of binding inhibitors (as observed with four soy-based sauces and one vinegar). Limitations of western blot analysis often include lower sensitivity than the comparable competitive ELISA and problems quantitating gluten-derived peptides and proteins. As a result, western blot analysis provides an orthogonal approach that can be used to both confirm the multiplex competitive ELISA while also providing additional insight into the protein/peptide profile of fermented-hydrolyzed foods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murraym JA, Everhart JE. The prevalence of celiac disease in the United States. Am J Gastroenterol. 2012;107:1538–44.

    Article  PubMed  Google Scholar 

  2. Lionetti E, Gatti S, Pulvirenti A, Catassi C. Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol. 2015;29(3):365–79.

    Article  PubMed  Google Scholar 

  3. McGough N, Cummings JH. Coeliac disease: a diverse clinical syndrome caused by intolerance of wheat, barley and rye. Proc Nutr Soc. 2005;64:434–50.

    Article  CAS  PubMed  Google Scholar 

  4. Tonutti E, Bizzaro N. Diagnosis and classification of celiac disease and gluten sensitivity. Autoimmun Rev. 2014;13:472–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wieser H. Chemistry of gluten protein. Food Microbiol. 2007;24(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ciccocioppo R, Di Sabatino A, Corazza GR. The immune recognition of gluten in coeliac disease. Clin Exp Immunol. 2005;140:408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vader W, Kooy Y, van Veelen P, De Ru A, Harris D, Benckhuijsen W, et al. The gluten response in children with celiac disease is directed towards multiple gliadin and glutenin peptides. Gatroentrology. 2002;122:1729–37.

    Article  CAS  Google Scholar 

  8. Dewar DH, Amato M, Julie Ellis H, Pollock EM, Gonzalez-Cinca N, Wieser H, et al. The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. Gastroenterol Hepatol. 2006;18:483–91.

    CAS  Google Scholar 

  9. Bruins Slot ID, van der Fels-Klerx HJ, MGEG B, Hamer RJ. Immunochemical detection methods for gluten in food products: where do we go from here? Crit Rev Food Sci Nutr. 2015. https://doi.org/10.1080/10408398.2013.847817.

  10. Food Labeling; Gluten-Free Labeling of Foods. 2013. 21 CFR Part 101 [Docket No. FDA-2005-N-0404] RIN 0910-AG84. Federal Register 78 (150, Monday, August 5, 2013) 47154–79. http://www.gpo.gov/fdsys/pkg/FR-2013-08-05/pdf/2013-18813.pdf. Accessed 23 Oct 2018

  11. Codex Standard 118-1979. Codex standard for foods for special dietary use for persons 700 intolerant to gluten. Codex Alimentarius Commission; 2008. Revision 1.

  12. Skerritt JH, Hill AS. Monoclonal antibody sandwich enzyme immunoassays for determination of gluten in foods. J Agric Food Chem. 1990;38:1771–8.

    Article  CAS  Google Scholar 

  13. Akiyama HK, Isuzugawa N, Harikai H, Watanabe K, Iijima H, Yamakawa Y, et al. Inter-laboratory evaluation studies for development of notified ELISA methods for allergic substances (wheat). Shokuhin Eiseigaku Zasshi. 2004;45:128–34.

    Article  PubMed  Google Scholar 

  14. Mendez E, Vela C, Immer U, Janssen FW. Report of a collaborative trial to investigate the performance of the R5 enzyme linked immunoassay to determine gliadin in gluten-free food. Eur J Gastroenterol Hepatol. 2005;17:1053–63.

    Article  CAS  PubMed  Google Scholar 

  15. Moron B, Cebolla A, Manyani H, Lvarez-Maqueda MA, Megías M, Thomas MDC, et al. Sensitive detection of cereal fractions that are toxic to celiac disease patients by using monoclonal antibodies to a main immunogenic wheat peptide. Am J Clin Nutr. 2008a;87:405–14.

    Article  CAS  PubMed  Google Scholar 

  16. Allred LK, Ritter BW. Recognition of gliadin and glutenin fractions in four commercial gluten assays. J AOAC Int. 2010;93(1):190–6.

    CAS  PubMed  Google Scholar 

  17. Matsuda RY, Yoshioka K, Akiyama K, Aburatani Y, Watanabe T, Matsumoto N, et al. Interlaboratory evaluation of two enzyme-linked immunosorbent assay kits for the detection of egg, milk, wheat, buckwheat and peanut in foods. J AOAC Int. 2006;89:1600–8.

    CAS  PubMed  Google Scholar 

  18. Immer U, Haas-Lauterbach S. Gliadin as a measure of gluten in foods containing wheat, rye, and barley—enzyme immunoassay method based on a specific monoclonal antibody to the potentially celiac toxic amino acid prolamin sequences: collaborative study. J AOAC Int. 2012;95:1118–24.

    Article  CAS  PubMed  Google Scholar 

  19. Panda R, Zoerb HF, Cho CY, Jackson LS, Garber EAE. Detection and quantification of gluten during the brewing and fermentation of beer using antibody-based technologies. J Food Prot. 2015;78:1167–77.

    Article  CAS  PubMed  Google Scholar 

  20. Panda R, Fiedler KL, Cho CY, Cheng R, Stutts WL, Jackson LS, et al. Effects of a proline endopeptidase on the detection and quantitation of gluten by antibody-based methods during the fermentation of a model sorghum beer. J Agric Food Chem. 2015;63:10525–35.

    Article  CAS  PubMed  Google Scholar 

  21. Knorr V, Wieser H, Koehler P. Production of gluten-free beer by peptidase treatment. Eur Food Res Technol. 2016;242:1129–40.

    Article  CAS  Google Scholar 

  22. Tanner GJ, Colgrave ML, Howitt CA. Gluten, celiac disease and gluten intolerance and the impact of gluten minimization treatments with prolylendopeptidase on the measurement of gluten in beer. J Am Soc Brew Chem. 2014;72(1):36–50.

    CAS  Google Scholar 

  23. Lacorn M, Weiss T. Partially hydrolyzed gluten in fermented cereal-based products by R5 competitive ELISA: collaborative study, first action 2015.05. J AOAC Int. 2015;98:1346–54.

    Article  CAS  PubMed  Google Scholar 

  24. Food Labeling. Gluten-free labeling of fermented or hydrolyzed foods 21 CFR part 101 [docket no. FDA–2014–N–1021] RIN 0910–AH00. Federal Register 80 (222, Wednesday, November 18, 2015) 71990–72006. https://www.gpo.gov/fdsys/pkg/FR-2015-11-18/pdf/2015-29292.pdf. Accessed 23 Oct 2018

  25. Panda R, Boyer M, Garber EAE. A multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods. Anal Bioanal Chem. 2017;409(30):6959–73.

    Article  CAS  PubMed  Google Scholar 

  26. Cao W, Watson D, Bakke M, Bedford B, Panda R, Jackson LS, et al. Detection of gluten during the fermentation process to produce soy sauce. J Food Prot. 2017;80:799–808.

    Article  CAS  Google Scholar 

  27. Colgrave ML, Goswami H, Howitt CA, Tanner GJ. Wheat is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer. J Proteome Res. 2012;11:386–96.

    Article  CAS  PubMed  Google Scholar 

  28. Colgrave ML, Goswami H, Blindell M, Howitt CA. Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA. J Chromatogr A. 2014;1370:105–14.

    Article  CAS  PubMed  Google Scholar 

  29. Akiyama H, Rilmai T, Ebisawa M. Chapter 4- Japan food allergen labeling regulation- history and evaluation. Adv Food Nutr Res. 2011;62:139–71.

    Article  CAS  PubMed  Google Scholar 

  30. Panda R, Tetteh AO, Siddhanakoppalu PN, Goodman RE. Enzymatic hydrolysis does not reduce the biological reactivity of soybean proteins for all allergic subjects. J Agric Food Chem. 2015;63:9629–39.

    Article  CAS  PubMed  Google Scholar 

  31. Lauriere M, Pecquet C, Bouchez-Mahiout I, Snegaroff J, Bayrou O, Raison-Peyron N, et al. Hydrolysed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis. 2006;54(5):283–9.

    Article  CAS  PubMed  Google Scholar 

  32. Leduc V, Moneret-Vautrin D, Guerin L, Morisset M, Kanny G. Anaphylaxis to wheat isolates: immunochemical study of a case proved by means of double-blind placebo-controlled food challenge. J Allergy Clin Immunol. 2003;111(4):897–9.

    Article  PubMed  Google Scholar 

  33. Bouchez-Mahiout I, Pecquet C, Kerre S, Snegaroff J, Raison-Peyron N, Lauriere M. High molecular weight entities in industrial wheat protein hydrolysates are immunoreactive with IgE from allergic patients. J Agric Food Chem. 2010;85(7):4207–15.

    Article  CAS  Google Scholar 

  34. Clemente A, Viogue J, Sanchez-Viogue R, Pedroche J, Millan F. Production of extensive chickpea (Cicer arietinum L.) protein hydrolysates with reduced antigenic activity. J Agric Food Chem. 1999;47(9):3776–81.

    Article  CAS  PubMed  Google Scholar 

  35. Comino I, Real A, Moreno M de L, Montes R, Cebollab A, Sousa C. Immunological determination of gliadin 33-mer equivalent peptides in beers as a specific and practical analytical method to assess safety for celiac patients. J Sci Food Agric. 2013;93:933–43.

    Article  CAS  PubMed  Google Scholar 

  36. Fiedler KL, Panda R, Croley TR. Analysis of gluten in a wheat-gluten-incurred sorghum beer brewed in the presence of proline endopeptidase by LC/MS/MS. Anal Chem. 2018;90(3):2111–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kanerva P, Brinck O, Sontag-Stohm T, Salovaara H, Loponen J. Deamidation of gluten proteins and peptides decreases the antibody affinity in gluten analysis assays. J Cereal Sci. 2011;53:335–9.

    Article  CAS  Google Scholar 

  38. Li H, Byrne K, Galiamov R, Mendoza-porras O, Bose U, Howitt CA, et al. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chem. 2018;254:302–8.

    Article  CAS  PubMed  Google Scholar 

  39. Colgrave ML, Byrne K, Howitt CA. Liquid chromatography-mass spectrometry analysis reveals hydrolyzed gluten in beers crafted to remove gluten. J Agric Food Chem. 2017;65(44):9715–25.

    Article  CAS  PubMed  Google Scholar 

  40. Schulz B, Phung TK, Bruschi M, Janusz A, Stewart J, Meehan J, et al. Process proteomics of beer reveals a dynamic proteome with extensive modification. J Proteome Res. 2018;17(4):1647–53.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi M. Immunological functions of soy sauce: hypoallergencity and antiallergic activity of soy sauce. J Biosci Bioeng. 2005;00(2):144–55.

    Article  CAS  Google Scholar 

  42. Kobayashi M, Hashimoto Y, Taniuchi S, Tanabe S. Degradation of wheat allergen in Japanese soy sauce. J Mol Med. 2004;13:821–7.

    CAS  Google Scholar 

  43. Janssen FW, van Klinken F, Immer U, Gowein C. Analytical research reports https://glutenfree.files.wordpress.com/2012/04/safety-of-asian-soy-sauce-in-gf-diet-janssen-et-al.pdf. Accessed 11 Apr 2018

  44. Sollid LM, Qiao S. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012;64:455–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Re V, Magris R, Cannizzaro R. New insight into the pathogenesis of celiac disease. Front Med. 2017;4:137.

    Article  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to Dr. Lauren S. Jackson, FDA, for providing invaluable insights into the various manufacturing processes associated with production of fermented-hydrolyzed foods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, R., Garber, E.A.E. Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Anal Bioanal Chem 411, 5159–5174 (2019). https://doi.org/10.1007/s00216-019-01893-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01893-0

Keywords

Navigation