Skip to main content
Log in

Quantitative non-destructive analysis of paper fillers using ATR-FT-IR spectroscopy with PLS method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A quantitative non-destructive express method of determining fillers —kaolin and chalk— in paper was created using attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy in the mid-IR and far-IR region (3800–245 cm−1) combined with partial least squares (PLS) data analysis. Altogether, 30 two-component (cellulose pulp + kaolin and cellulose pulp + chalk) reference paper samples with known different filler concentrations and one reference paper sample without any fillers were prepared for calibration and validation. The reference values of filler concentrations in the prepared papers were determined by gravimetric analysis via dry ashing (for establishing accurate concentrations of fillers in paper) and ATR-FT-IR microspectroscopy (for evaluating homogeneity of the papers). Two-component (cellulose pulp + kaolin or cellulose pulp + chalk) PLS models were created with papers of different cellulose types and containing different amounts of fillers. The best model had root mean square errors of prediction (RMSEP) for determining the kaolin or chalk content in the two-component papers of 2.0 and 2.1 g/100 g, respectively. The performance indices were 90.4% and 92.9%, respectively. As a demonstration of practical applicability of the method, different papers from books, journals, etc. were analysed. It was concluded that the developed quantitative method is suitable for non-destructive express analysis of kaolin or chalk in paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hunter D. Papermaking: the history and technique of an ancient craft. New York: Dover Publications; 1978.

    Google Scholar 

  2. Dabrowski J. Fibre loading in papermaking. Pap Hist. 2009;13(1):6–11.

    Google Scholar 

  3. Cséfalvayová L, Pelikan M, Kralj Cigić I, Kolar J, Strlič M. Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT-IR and NIR spectral data. Talanta. 2010;82(5):1784–90.

    Article  CAS  PubMed  Google Scholar 

  4. Area MC, Cheradame H. Paper aging and degradation: recent findings and research methods. BioResources. 2011;6(4):5307–37.

    CAS  Google Scholar 

  5. Carter HA. The chemistry of paper preservation: part 1. The aging of paper and conservation techniques. J Chem Educ. 1996;73(5):417–20.

    Article  CAS  Google Scholar 

  6. Carter HA. The chemistry of paper preservation: part 2. The yellowing of paper and conservation bleaching. J Chem Educ. 1996;73(11):1068–73.

    Article  CAS  Google Scholar 

  7. Kogel JE, Trivedi NC, Barker JM, Krukowski ST. Industrial minerals & rocks: commodities, markets, and uses. 7th ed. Littleton: SME; 2006.

    Google Scholar 

  8. Shen J, Song Z, Qian X, Ni Y. A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res. 2011;50(2):661–6.

    Article  CAS  Google Scholar 

  9. Doncea SM, Ion RM, Fierascui RC, Bacalum E, Bunaciu AA, Aboul-Enein HY. Spectral methods for historical paper analysis: composition and age approximation. Instrum Sci Technol. 2010;38(1):96–106.

    Article  CAS  Google Scholar 

  10. Zervos S, Alexopoulou I. Paper conservation methods: a literature review. Cellulose. 2015;22(5):2859–97.

    Article  CAS  Google Scholar 

  11. Causin V, Marega C, Marigo A, Casamassima R, Peluso G, Ripani L. Forensic differentiation of paper by X-ray diffraction and infrared spectroscopy. Forensic Sci Int. 2010;197:70–4.

    Article  CAS  PubMed  Google Scholar 

  12. Calcerrada M, García-Ruiz C. Analysis of questioned documents: a review. Anal Chim Acta. 2015;853:143–66.

    Article  CAS  PubMed  Google Scholar 

  13. Silva CS, Pimentel MF, Amigo JM, García-Ruiz C, Ortega-Ojeda F. Chemometric approaches for document dating: handling paper variability. Anal Chim Acta. 2018;1031:28–37.

    Article  CAS  PubMed  Google Scholar 

  14. Nesměrák K, Němcová I. Dating of historical manuscripts using spectrometric methods: a mini-review. Anal Lett. 2012;45(4):330–44.

    Article  CAS  Google Scholar 

  15. Tino R, Vizarova K, Provaznikova J, Suty S, Kirschnerova S. Utilization of statistical analysis of FT-IR spectra in forensic examination of paper. Chem Pap. 2018;72(9):2265–72.

    Article  CAS  Google Scholar 

  16. Carter HA. The chemistry of paper preservation: part 4. Alkaline paper. J Chem Educ. 1997;74(5):508–11.

    Article  CAS  Google Scholar 

  17. Collings T, Milner D. A new chronology of papermaking technology. Pap Conserv. 1990;14(1):58–62.

    Article  Google Scholar 

  18. Manso M, Carvalho ML, Queralt I, Vicini S, Princi E. Investigation of the composition of historical and modern Italian papers by energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). Appl Spectrosc. 2011;65(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bluhm TL, Jones AY, Deslandes Y. X-ray methods for quantitative determination of inorganic fillers in paper. Can J Chem. 1985;63(1):243–8.

    Article  CAS  Google Scholar 

  20. Cherkas O, Beuvier T, Fall S, Gibaud A. X-ray absorption and diffraction analysis for determination of the amount of calcium carbonate and porosity in paper sheets. Cellulose. 2016;23(5):2831–40.

    Article  CAS  Google Scholar 

  21. Manso M, Reis MA, Candeias J, Carvalho ML. Portable energy dispersive X-ray fluorescence spectrometry and PIXE for elemental quantification of historical paper documents. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2013;298:66–9.

    Article  CAS  Google Scholar 

  22. Udriştioiu FM, Tănase IG, Bunaciu AA, Aboul-Enein HY. Paper analysis: nondestructive and destructive analytical methods. Appl Spectrosc Rev. 2012;47(7):550–70.

    Article  Google Scholar 

  23. van Es A, de Koeijer J, van der Peijl G. Discrimination of document paper by XRF, LA–ICP–MS and IRMS using multivariate statistical techniques. Sci Justice. 2009;49(2):120–6.

    Article  CAS  Google Scholar 

  24. Trafela T, Strlič M, Kolar J, Lichtblau DA, Anders M, Mencigar DP, et al. Nondestructive analysis and dating of historical paper based on IR spectroscopy and chemometric data evaluation. Anal Chem. 2007;79(16):6319–23.

    Article  CAS  PubMed  Google Scholar 

  25. Kher A, Mulholland M, Reedy B, Maynard P. Classification of document papers by infrared spectroscopy and multivariate statistical techniques. Appl Spectrosc. 2001;55(9):1192–8.

    Article  CAS  Google Scholar 

  26. Zhao H, Hou Q, Hong Y, Liu W, Li Y, Tong F. Determination of calcium carbonate and styrene-butadiene latex content in the coating layer of coated paper. J Ind Eng Chem. 2014;20(4):1571–6.

    Article  CAS  Google Scholar 

  27. Trafela T, Mizuno M, Fukunaga K, Strlič M. Quantitative characterisation of historic paper using THz spectroscopy and multivariate data analysis. Appl Phys A Mater Sci Process. 2013;111(1):83–90.

    Article  CAS  Google Scholar 

  28. Brown N, Lichtblau D, Fearn T, Strlič M. Characterisation of 19th and 20th century Chinese paper. Herit Sci. 2017;5:1–14.

    Article  CAS  Google Scholar 

  29. Canals T, Riba JR, Cantero R, Cansino J, Domingo D, Iturriaga H. Characterization of paper finishes by use of infrared spectroscopy in combination with canonical variate analysis. Talanta. 2008;77(2):751–7.

    Article  CAS  Google Scholar 

  30. Kumar R, Sharma V. A novel combined approach of diffuse reflectance UV–Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application. Spectrochim Acta A Mol Biomol Spectrosc. 2017;175:67–75.

    Article  CAS  PubMed  Google Scholar 

  31. Vahur S, Knuutinen U, Leito I. ATR-FT-IR spectroscopy in the region of 500–230cm−1 for identification of inorganic red pigments. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73(4):764–71.

    Article  CAS  PubMed  Google Scholar 

  32. Peets P, Leito I, Pelt J, Vahur S. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochim Acta A Mol Biomol Spectrosc. 2017;173:175–81.

    Article  CAS  PubMed  Google Scholar 

  33. Smith BC. Fundamentals of Fourier transform infrared spectroscopy. 2nd ed. Boca Raton: CRC Press; 2011.

    Book  Google Scholar 

  34. Hayes PA, Vahur S, Leito I. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Spectrochim Acta A Mol Biomol Spectrosc. 2014;133:207–13.

    Article  CAS  PubMed  Google Scholar 

  35. Vahur S, Teearu A, Peets P, Joosu L, Leito I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm−1. Anal Bioanal Chem. 2016;408(13):3373–9.

    Article  CAS  PubMed  Google Scholar 

  36. Vahur S, Teearu A, Leito I. ATR-FT-IR spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments. Spectrochim Acta A Mol Biomol Spectrosc. 2010;75(3):1061–72.

    Article  CAS  PubMed  Google Scholar 

  37. Yilmaz G. The effects of temperature on the characteristics of kaolinite and bentonite. Sci Res Essays. 2011;6(9):1928–39.

    Article  CAS  Google Scholar 

  38. Lysikov AI, Salanov AN, Okunev AG. Change of CO2 carrying capacity of CaO in isothermal recarbonation−decomposition cycles. Ind Eng Chem Res. 2007;46(13):4633–8.

    Article  CAS  Google Scholar 

  39. Willmott CJ, Robeson SM, Matsuura K. A refined index of model performance. Int J Climatol. 2012;32(13):2088–94.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Personal Research Funding PUT1521 from the Estonian Research Council and by the EU through the European Regional Development Fund (TK141 “Advanced materials and high-technology devices for energy recuperation systems”). This work was carried out using the instrumentation of the Estonian Center of Analytical Chemistry (www.akki.ee). Reference papers were prepared with the help of paper conservator Küllike Pihkva from the National Archives of Estonia to whom we are indebted. The authors thank Mr. Jaan Aruväli from the Department of Geology, University of Tartu (Estonia), for helping with the analysis; Mrs. Kersti Lužkov from Estonian Cell AS for donating their cellulose pulps; and Mrs. Merike Kiipus from Estonian Literary Museum for donating archival-quality material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Vahur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The authors declare that no human participants and/or animals were involved in this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahur, S., Eero, L., Lehtaru, J. et al. Quantitative non-destructive analysis of paper fillers using ATR-FT-IR spectroscopy with PLS method. Anal Bioanal Chem 411, 5127–5138 (2019). https://doi.org/10.1007/s00216-019-01888-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01888-x

Keywords

Navigation