Skip to main content
Log in

Determination of liquid chromatography/flame ionization detection response factors for alcohols, ketones, and sugars

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the past, the main focus of flame ionization detector (FID) response studies was set on investigations of gas chromatography (GC) relevant analytes such as aliphatic hydrocarbons and selected functional groups. Only a few data are available for liquid chromatography (LC)/FID responses. Within this research paper, we present the FID response factors for a LC/FID system with an aqueous eluent as mobile phase. The study focus on the most common analytes of LC/FID studies in the past as well as several compounds that are not directly GC compatible because of their polarity. Furthermore, the range of substances was extended to isomers, poly-alcohols, and sugars to obtain more detailed information of the influence of hydroxyl groups on the recorded response. The data show a group-specific correlation of response factors with a correlation coefficient (R2) for, e.g., alcohols and ketones of 0.99. Constant contribution factors of functional groups as mentioned in several GC/FID response studies and prediction models were observed to a limited extent. Interactions of sugar analytes with water showed that transfer of GC/FID to LC/FID data cannot be done in general. The underlying mechanisms revealed several new aspects, which have to be taken into account for future response prediction models, especially of small molecules. Interactions between eluent and analytes show that LC/FID response prediction is more complex and requires more than simple addition of functional group contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holm T. Aspects of the mechanism of the flame ionization detector. J Chromatogr A. 1999;842(1–2):221–7. https://doi.org/10.1016/s0021-9673(98)00706-7.

    Article  CAS  Google Scholar 

  2. Ackman RG. Fundamental groups in the response of flame ionization detectors to oxygenated aliphatic hydrocarbons. J Chromatogr Sci. 1964;2(6):173–9. https://doi.org/10.1093/chromsci/2.6.173.

    Article  CAS  Google Scholar 

  3. de Saint Laumer JY, Cicchetti E, Merle P, Egger J, Chaintreau A. Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures. Anal Chem. 2010;82(15):6457–62. https://doi.org/10.1021/ac1006574.

    Article  CAS  PubMed  Google Scholar 

  4. Jorgensen AD, Picel KC, Stamoudis VC. Prediction of gas chromatography flame ionization detector response factors from molecular structures. Anal Chem. 1990;62(7):683–9. https://doi.org/10.1021/ac00206a007.

    Article  CAS  Google Scholar 

  5. Smith RM, Burgess RJ. Superheated water - a clean eluent for reversed-phase high-performance liquid chromatography. Anal Commun. 1996;33(9):327–9. https://doi.org/10.1039/ac9963300327.

    Article  CAS  Google Scholar 

  6. Yang Y. Subcritical water chromatography: a green approach to high-temperature liquid chromatography. J Sep Sci. 2007;30(8):1131–40. https://doi.org/10.1002/jssc.200700008.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson ID. Investigation of a range of stationary phases for the separation of model drugs by HPLC using superheated water as the mobile phase. Chromatographia. 2000;52:S28–34. https://doi.org/10.1007/bf02493117.

    Article  CAS  Google Scholar 

  8. Yarita T, Nakajima R, Otsuka S, Ihara T, Takatsu A, Shibukawa M. Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flame ionization detection using pure water as mobile phase. J Chromatogr A. 2002;976(1–2):387–91. https://doi.org/10.1016/s0021-9673(02)00942-1.

    Article  CAS  PubMed  Google Scholar 

  9. Chienthavorn O, Smith RM. Buffered superheated water as an eluent for reversed-phase high performance liquid chromatography. Chromatographia. 1999;50(7–8):485–9. https://doi.org/10.1007/bf02490746.

    Article  CAS  Google Scholar 

  10. Becker C, Jochmann MA, Schmidt TC. An overview of approaches in liquid chromatography flame ionization detection. Trends Anal Chem. 2018. https://doi.org/10.1016/j.trac.2018.10.038.

  11. Fu Y, Song RJ, Yao N, Long YD, Huang TB. Separation of some alcohols, phenols and caboxylic acids by coupling of subcritical water chromatography and flame ionization detection with post-column splitting. Chin J Anal Chem. 2007;35(9):1335–8.

    Article  CAS  Google Scholar 

  12. Zhang L, Kujawinski DM, Jochmann MA, Schmidt TC. High-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(20):2971–80. https://doi.org/10.1002/rcm.5069.

    Article  CAS  PubMed  Google Scholar 

  13. Neff WE, Byrdwell WC. Soybean oil triacylglycerol analysis by reversed-phase high performance liquid-chromatography coupled with atmospheric-pressure-chemical-ionization mass spectrometry. J Am Oil Chem Soc. 1995;72(10):1185–91. https://doi.org/10.1007/bf02540986.

    Article  CAS  Google Scholar 

  14. Neff WE, Jackson MA, List GR, King JW. Qualitative and quantitative determination of methyl esters, free fatty acids, mono-, di-, and triacylglycerols via HPLC coupled with a flame ionization detector. J Liq Chromatogr Relat Technol. 1997;20(7):1079–90. https://doi.org/10.1080/10826079708010960.

    Article  CAS  Google Scholar 

  15. Musumarra G, Pisano D, Katritzky AR, Lapucha AR, Luxem FJ, Murugan R, et al. Prediction of gas chromatographic response factors by the PLS method. Tetrahedron Comput Methodol. 1989;2(1):17–36. https://doi.org/10.1016/0898-5529(89)90026-2.

    Article  CAS  Google Scholar 

  16. Tong HY, Karasek FW. Flame ionization detector response factors for compound classes in quantitative analysis of complex organic mixtures. Anal Chem. 1984;56(12):2124–8. https://doi.org/10.1021/ac00276a033.

    Article  CAS  Google Scholar 

  17. Maggs RJ. A commercial detector for monitoring the eluent from liquid chromatographic columns. Chromatographia. 1968;1(1–2):43–8. https://doi.org/10.1007/bf02259010.

    Article  Google Scholar 

  18. Scott RPW, Lawrence JG. An improved moving wire liquid chromatography detector. J Chromatogr Sci. 1970;8(2):65–71. https://doi.org/10.1093/chromsci/8.2.65.

    Article  CAS  Google Scholar 

  19. Sternberg JC, Gallaway, W.S. and Jones, D.T.L. The mechanism of response of flame ionization detectors. Gas chromatography: Third International Symposium Held Under the Auspices of the Analysis Instrumentation Division of the Instrument Society of America, June 13–16, 1961. Academic; 1962. p. 231–67.

  20. Scanlon JT, Willis DE. Calculation of flame ionization detector relative response factors using the effective carbon number concept. J Chromatogr Sci. 1985;23(8):333–40. https://doi.org/10.1093/chromsci/23.8.333.

    Article  CAS  Google Scholar 

  21. Halasz I, Schneider W. Quantitative gas chromatographic analysis of hydrocarbons with capillary column and flame ionization detector. Anal Chem. 1961;33(8):978–82. https://doi.org/10.1021/ac60176a034.

    Article  CAS  Google Scholar 

  22. Dietz WA. Response factors for gas chromatographic analyses. J Chromatogr Sci. 1967;5(2):68–71. https://doi.org/10.1093/chromsci/5.2.68.

    Article  CAS  Google Scholar 

  23. Young E, Smith RM, Sharp BL, Bone JR. Liquid chromatography-flame ionisation detection using a nebuliser/spray chamber interface. Part 2. Comparison of functional group responses. J Chromatogr A. 2012;1236:21–7. https://doi.org/10.1016/j.chroma.2012.02.035.

    Article  CAS  PubMed  Google Scholar 

  24. Kosch J. Total hydrocarbon analysis using flame ionization detector. Environmental Instrumentation and Analysis Handbook. Wiley; 2005. p. 147–56.

  25. Perkins G, Laramy RE, Lively LD. Flame response in the quantitative determination of high molecular weight paraffins and alcohols by gas chromatography. Anal Chem. 1963;35(3):360–2. https://doi.org/10.1021/ac60196a028.

    Article  CAS  Google Scholar 

  26. Veloo PS. Studies of combustion characteristics of alcohols, aldehydes and ketons. University of Southern California. 2011(Dissertation):1–221.

  27. Lam K-Y, Ren W, Pyun SH, Farooq A, Davidson DF, Hanson RK. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis. Proc Combust Inst. 2013;34(1):607–15. https://doi.org/10.1016/j.proci.2012.06.009.

    Article  CAS  Google Scholar 

  28. Szwarc M, Taylor JW. Pyrolysis of acetone and the heat of formation of acetyl radicals. J Chem Phys. 1955;23(12):2310–4. https://doi.org/10.1063/1.1740745.

    Article  CAS  Google Scholar 

  29. Falbe J, Regitz MRÖMPP. Lexikon Chemie, 10. Auflage, 1996-1999: Band 2: Cm - G. In: Thieme; 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik A. Jochmann.

Ethics declarations

The authors declare that no human participants and/or animals were involved in research. The authors declare that no data, text, or theories by others are presented without citation.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, C., Jochmann, M.A. & Schmidt, T.C. Determination of liquid chromatography/flame ionization detection response factors for alcohols, ketones, and sugars. Anal Bioanal Chem 411, 2635–2644 (2019). https://doi.org/10.1007/s00216-019-01702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01702-8

Keywords

Navigation