Skip to main content

Advertisement

Log in

Fluorescence imaging-based methods for single-cell protein analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The quantity and activity of proteins in many biological systems exhibit prominent heterogeneities. Single-cell analytical methods can resolve subpopulations and dissect their unique signatures from heterogeneous samples, enabling a clarifying view of the biological process. Over the last 5 years, technologies for single-cell protein analysis have significantly advanced. In this article, we highlight a branch of those technology developments involving fluorescence-based approaches, with a focus on the methods that increase the ability to multiplex and enable dynamic measurements. We also analyze the limitations of these techniques and discuss current challenges in the field, with the hope that more transformative platforms can soon emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hunter T. Signaling--2000 and beyond. Cell. 2000;1:113–27.

    Article  Google Scholar 

  2. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;2:295–309.

    Article  Google Scholar 

  3. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;3:471–84.

    Article  CAS  Google Scholar 

  4. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;6980:332–7.

    Article  CAS  Google Scholar 

  5. Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic beta-cell to treat diabetes. Nat Rev Drug Discov. 2014;4:278–89.

    Article  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;1:57–70.

    Article  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;5:646–74.

    Article  CAS  Google Scholar 

  8. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;2:85–96.

    Article  CAS  Google Scholar 

  9. Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling in autoimmunity. Nat Rev Immunol. 2017;7:421–36.

    Article  CAS  Google Scholar 

  10. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;5:1780–9.

    Article  Google Scholar 

  11. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;1:28–37.

    Article  CAS  Google Scholar 

  12. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;7:422–39.

    Article  CAS  Google Scholar 

  13. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O’Young G, Cristea S, et al. Intratumoural heterogeneity generated by notch signalling promotes small-cell lung cancer. Nature. 2017;7654:360–4.

    Article  CAS  Google Scholar 

  14. Welch DR. Tumor heterogeneity—a ‘contemporary concept’ founded on historical insights and predictions. Cancer Res. 2016;1:4–6.

    Article  CAS  Google Scholar 

  15. Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med. 2011;17:738–43.

  16. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;3:175–88.

    Article  CAS  Google Scholar 

  17. Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat Rev Genet. 2017;6:345–61.

    Article  CAS  Google Scholar 

  18. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;4:780–91.

    Article  CAS  Google Scholar 

  19. Yu J, Zhou J, Sutherland A, Wei W, Shin YS, Xue M, et al. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem. 2014;1:275–95.

    Article  CAS  Google Scholar 

  20. Su Y, Wei W, Robert L, Xue M, Tsoi J, Garcia-Diaz A, et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc Natl Acad Sci. 2017;52:13679–84.

    Article  CAS  Google Scholar 

  21. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;5:252–62.

    Article  CAS  Google Scholar 

  22. Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;1:35–48.

    Article  CAS  Google Scholar 

  23. Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov. 2016;15:204–16.

  24. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci. 2015;7:E607–E15.

    Article  CAS  Google Scholar 

  25. Yang L, Wang Z, Deng Y, Li Y, Wei W, Shi Q. Single-cell, multiplexed protein detection of rare tumor cells based on a beads-on-barcode antibody microarray. Anal Chem. 2016;22:11077–83.

    Article  CAS  Google Scholar 

  26. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;6233:aaa6090.

    Article  CAS  Google Scholar 

  27. Mondal M, Liao R, Xiao L, Eno T, Guo J. Highly multiplexed single-cell in situ protein analysis with cleavable fluorescent antibodies. Angew Chem Int Ed. 2017;10:2636–9.

    Article  CAS  Google Scholar 

  28. Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they’re apart. Science. 2009;5957:1220–4.

    Article  CAS  Google Scholar 

  29. Shin YS, Remacle F, Fan R, Hwang K, Wei W, Ahmad H, et al. Protein signaling networks from single cell fluctuations and information theory profiling. Biophys J. 2011;10:2378–86.

    Article  CAS  Google Scholar 

  30. Karl FA. Free energy principle for biological systems. Entropy (Basel). 2012;11:2100–21.

    Article  Google Scholar 

  31. Komatsuzaki T, Baba A, Kawai S, Toda M, Straub JE, Berry RS. Ergodic problems for real complex systems in chemical physics. Advancing theory for kinetics and dynamics of complex, many-dimensional systems: clusters and proteins. Adv Chem Phys. 2011;145:171–220.

  32. Ridden SJ, Chang HH, Zygalakis KC, MacArthur BD. Entropy, ergodicity, and stem cell multipotency. Phys Rev Lett. 2015;20:208103.

    Article  CAS  Google Scholar 

  33. Weigel AV, Simon B, Tamkun MM, Krapf D. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci. 2011;16:6438–43.

    Article  Google Scholar 

  34. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci. 2012;5:1607–12.

    Article  Google Scholar 

  35. Zotter A, Bäuerle F, Dey D, Kiss V, Schreiber G. Quantifying enzyme activity in living cells. J Biol Chem. 2017;38:15838–48.

    Article  Google Scholar 

  36. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci. 2017;2:111–29.

    Article  CAS  Google Scholar 

  37. Ni Q, Mehta S, Zhang J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 2017;2:203–19.

    Google Scholar 

  38. Conlon P, Gelin-Licht R, Ganesan A, Zhang J, Levchenko A. Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway. Proc Natl Acad Sci. 2016;40:E5896–E905.

    Article  CAS  Google Scholar 

  39. Mehta S, Zhang Y, Roth RH, Zhang J-f, Mo A, Tenner B, et al. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat Cell Biol. 2018;10:1215–25.

    Article  CAS  Google Scholar 

  40. Gross SM, Dane MA, Bucher E, Heiser LM. High resolution AKT signaling in individual cells. bioRxiv. 2018. https://doi.org/10.1101/373993

  41. Shao S, Li Z, Cheng H, Wang S, Perkins NG, Sarkar P, et al. Chemical approach for profiling intracellular AKT signaling dynamics from single cells. J Am Chem Soc. 2018;42:13586–9.

    Article  CAS  Google Scholar 

  42. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;1:83.

    Article  CAS  Google Scholar 

  43. Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84.

  44. Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab. 2016;4:4.

Download references

Acknowledgements

We thank Prof. Jin Zhang for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ji, F., Li, Z. et al. Fluorescence imaging-based methods for single-cell protein analysis. Anal Bioanal Chem 411, 4339–4347 (2019). https://doi.org/10.1007/s00216-019-01694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01694-5

Keywords

Navigation