Skip to main content
Log in

Facile detection of melamine by a FAM–aptamer–G-quadruplex construct

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of a novel method for melamine detection that uses a FAM–aptamer–G-quadruplex construct due to the efficient quenching ability of an aptamer-linked G-quadruplex is reported herein. The construct, which is labeled with the fluorescent dye 6-carboxyfluorescein (FAM), consists of two parts: a melamine-binding aptamer and a G-rich sequence that can form a G-quadruplex structure. Because of the specific recognition of melamine by the T-rich aptamer, this aptamer folds into a hairpin structure in the presence of melamine, which draws the G-quadruplex closer to the FAM fluorophore, leading to the quenching of the fluorescence of FAM. Thus, a highly sensitive and selective fluorescence strategy for assaying melamine was established. Under optimal conditions, the fluorescence quenching is proportional to the concentration of melamine within the range 10–90 nM, and the method has a detection limit of 6.32 nM. Further application of the method to plastic cup samples suggested that it permitted recoveries of between 97.15% ± 1.02 and 101.92% ± 2.07. The detected amounts of melamine spiked into the plastic cup samples and the corresponding amounts measured by HPLC were in good accordance, indicating that this fluorescent method is reliable and practical. Owing to its high sensitivity, excellent selectivity, and convenient procedure, this strategy represents a promising alternative method of melamine screening.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang JB, Moussa N, Hisahiro K, Koji M, Fujio K. Placental transfer of melamine and its effects on rat dams and fetuses. Food Chem Toxicol. 2010;48:1791–5.

    Article  CAS  Google Scholar 

  2. Ritota M, Manzi P. Melamine detection in milk and dairy products: traditional analytical methods and recent developments. Food Anal Methods. 2018;11:128–47.

    Article  Google Scholar 

  3. Zhang SJ, Zhao QY, Na H, Sun YP, Suo YR, You JM. Sensitive determination of melamine leached from tableware by reversed phase high-performance liquid chromatography using 10-methyl-acridone-2-sulfonyl chloride as a pre-column fluorescent labeling reagent. Food Control. 2014;39:25–9.

    Article  CAS  Google Scholar 

  4. Mattarozzi M, Milioli M, Cavalieri C, Bianchi F, Careri M. Rapid desorption electrospray ionization-high resolution mass spectrometry method for the analysis of melamine migration from melamine tableware. Talanta. 2012;101:453–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lund KH, Petersen JH. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam. 2006;23:948–55.

    Article  CAS  PubMed  Google Scholar 

  6. Hau AKC, Kwan TH, Li PKT. Melamine toxicity and the kidney. J Am Soc Nephrol. 2009;20:245–50.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S, Yasui T, et al. The mechanism of renal stone formation and renal failure induced by administration of melamine and cyanuric acid. Urol Res. 2010;38:117–25.

    Article  CAS  PubMed  Google Scholar 

  8. Dorne JL, Doerge DR, Vandenbroeck M, Fink-Gremmels J, Mennes W, Knutsen HK, et al. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicol Appl Pharmacol. 2013;270:218–29.

    Article  CAS  PubMed  Google Scholar 

  9. European Commission. Off J Eur Union L. 2011;328:22–9.

  10. Venkatasami G, Sowa JR Jr. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Anal Chim Acta. 2010;665:227–30.

    Article  CAS  PubMed  Google Scholar 

  11. Wu YT, Huang CM, Lin CC, Ho WA, Lin LC, Chiu TF, et al. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2009;1216:7595–601.

    Article  CAS  PubMed  Google Scholar 

  12. Pan XD, Wu PG, Yang DJ, Wang LY, Shen XH, Zhu CY. Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC-MS. Food Control. 2013;30:545–8.

    Article  CAS  Google Scholar 

  13. Zhang YL, Chen LJ, Zhang C, Liu ST, Zhu HK, Wang YM. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis. Talanta. 2016;150:375–87.

  14. Cao BY, Yang H, Song J, Chang HF, Li SQ, Deng AP. Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples. Talanta. 2013;116:173–80.

    Article  CAS  PubMed  Google Scholar 

  15. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.

  16. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    Article  CAS  PubMed  Google Scholar 

  17. Ilgu M, Nilsen-Hamiltona M. Aptamers in analytics. Analyst. 2016;141:1551–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pfeiffer F, Mayer G. Selection and biosensor application of aptamers for small molecules. Front Chem. 2016;4:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng CJ, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens Bioelectron. 2014;59:64–74.

    Article  CAS  PubMed  Google Scholar 

  20. Zhan SS, Wu YG, Wang LM, Zhan XJ, Zhou P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron. 2016;86:353–68.

    Article  CAS  PubMed  Google Scholar 

  21. Deng B, Lin YW, Wang C, Li F, Wang ZX, Zhang HQ, et al. Aptamer binding assays for proteins: The thrombin example—a review. Anal Chim Acta. 2014;837:1–15.

  22. Hong KL, Sooter LJ. Single-stranded DNA aptamers against pathogens and toxins: Identification and biosensing applications. BioMed Res Int. 2015;419318.

  23. Zeng YY, Pratumyot Y, Piao XJ, Bong D. Discrete assembly of synthetic peptide-DNA triplex structures from polyvalent melamine-thymine bifacial recognition. J Am Chem Soc. 2012;134:832–5.

    Article  CAS  PubMed  Google Scholar 

  24. Yang HL, Wang JJ, Wu QH, Wang Y, Li L, Ding BM. Simple and label-free fluorescent detection of melamine based on melamine–thymine recognition. Sensors. 2018;18:2968–74.

    Article  CAS  Google Scholar 

  25. Yun W, Li H, Chen SQ, Tu DW, Xie WY, Huang Y. Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol. 2014;238:989–95.

    Article  CAS  Google Scholar 

  26. Jiang ZL, Zhou LP, Liang AH. Resonance scattering detection of trace melamine using aptamer-modified nanosilver probe as catalyst without separation of its aggregations. Chem Commun. 2011;47:3162–4.

    Article  CAS  Google Scholar 

  27. Dong N, Hu YJ, Yang K, Liu JZ. Development of aptamer-modified SERS nanosensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity. Sensors Actuators B Chem. 2016;228:85–93.

    Article  CAS  Google Scholar 

  28. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–15.

  29. Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev. 2008;37:1375–84.

  30. Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008;36:5482–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruttkay-Nedecky B, Kudr J, Nejdl L, Maskova D, Kizek R, Adam V. G-quadruplexes as sensing probes. Molecules. 2013;18:14760–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miao P, Tang YG, Wang BD, Han K, Chen XF, Sun HX. An aptasensor for detection of potassium ions based on RecJf exonuclease mediated signal amplification. Analyst. 2014;139(22):5695–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Wang LL, Hou MF, Luo LP, Liao YJ, Xia YK, et al. Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes. Biosens Bioelectron. 2018;118:1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, et al. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci. 2001;17:155–60.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang YW, Tian JQ, Zhai JF, Luo YL, Wang L, Li HL, et al. Fluorescence-enhanced potassium ions detection based on inherent quenching ability of deoxyguanosines and K+-induced conformational transition of G-rich ssDNA from duplex to G-quadruplex structures. J Fluoresc. 2011;21:1841–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Tian JQ, Li HL, Zhang YW, Sun XP. A novel single-labeled fluorescent oligonucleotide probe for silver(I) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst. 2011;136:891–3.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu YF, Wang YS, Zhou B, Yu JH, Peng LL, Huang YQ, et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal Bioanal Chem. 2017;409:4951–8.

    Article  CAS  PubMed  Google Scholar 

  38. Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, et al. Volumetric characterization of sodium-induced G-quadruplex formation. J Am Chem Soc. 2011;133:4518–26.

    Article  CAS  PubMed  Google Scholar 

  39. Yang XH, Zhu Y, Liu P, He LL, Li QZ, Wang Q, et al. G-quadruplex fluorescence quenching ability: a simple and efficient strategy to design a single-labeled DNA probe. Anal Methods. 2012;4:895–7.

    Article  CAS  Google Scholar 

  40. Bian LJ, Ji X, Hu W. A novel single-labeled fluorescent oligonucleotide probe for silver(I) ion detection in water, drugs, and food. J Agric Food Chem. 2014;62:4870–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wang WH, Jin Y, Zhao YN, Yue XF, Zhang CX. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet. Biosens Bioelectron. 2013;41:137–42.

    Article  CAS  PubMed  Google Scholar 

  42. Pang S, Liu SY, Su XG. A novel fluorescence assay for the detection of hemoglobin based on the G-quadruplex/hemin complex. Talanta. 2014;118:118–22.

    Article  CAS  PubMed  Google Scholar 

  43. Li T, Wang EK, Dong SJ. Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc. 2009;131:15082–3.

    Article  CAS  PubMed  Google Scholar 

  44. Xu LJ, Sun N, Zhou L, Chen X, Wang JN, Wang QL, et al. A label-free fluorescence assay for potassium ions using riboflavin as a G-quadruplex ligand. Analyst. 2015;140:3352–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang DJ, Han J, Li YC, Fan LZ, Li XH. Aptamer-based K+ sensor: process of aptamer transforming into G-quadruplex. J Phys Chem B. 2016;120:6606–11.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu X, Chen LF, Lin ZY, Qiu B, Chen GN. A highly sensitive and selective “signal-on” electrochemiluminescent biosensor for mercury. Chem Commun. 2010;46:3149–51.

    Article  CAS  Google Scholar 

  47. Guo LQ, Yin N, Chen GN. Photoinduced electron transfer mediated by π-stacked thymine-Hg2+-thymine base pairs. J Phys Chem C. 2011;115:4837–42.

    Article  CAS  Google Scholar 

  48. Chang YM, Chen CK, Hou MH. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci. 2012;13:3394–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao S, Cao YW, Yan YT, Guo XH. Sequence effect on the topology of 3 + 1 interlocked bimolecular DNA G-quadruplexes. Biochemistry. 2016;55:2694–703.

    Article  CAS  PubMed  Google Scholar 

  51. Esposito V, Pirone L, Mayol L, Pedone E, Virgilio A, Galeone A. Exploring the binding of d(GGGT)4 to the HIV-1 integrase: an approach to investigate G-quadruplex aptamer/target protein interactions. Biochimie. 2016;27:19–22.

  52. Cheng S, Zheng B, Wang MZ, Ge XW, Zhao Q, Liu W, et al. The unfolding of G-quadruplexes and its adverse effect on DNA-gold nanoparticles-based sensing system. Biosens Bioelectron. 2014;53:479–85.

    Article  CAS  PubMed  Google Scholar 

  53. Engelhard DM, Nowack J, Clever GH. Copper-induced topology switching and thrombin inhibition with telomeric DNA G-quadruplexes. Angew Chem Int Ed. 2017;56:11640–4.

    Article  CAS  Google Scholar 

  54. Friedman SJ, Terentis AC. Analysis of G-quadruplex conformations using Raman and polarized Raman spectroscopy. J Raman Spectrosc. 2016;47:259–68.

    Article  CAS  Google Scholar 

  55. Zhang BZ, Wei CY. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta. 2018;182:125–30.

    Article  CAS  PubMed  Google Scholar 

  56. Guo LQ, Nie DD, Qiu CY, Zheng QS, Wu HY, Ye PR, et al. A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens Bioelectron. 2012;35:123–7.

    Article  CAS  PubMed  Google Scholar 

  57. Khedr A. Optimized extraction method for LC–MS determination of bisphenol A, melamine and di(2-ethylhexyl) phthalate in selected soft drinks, syringes, and milk powder. J Chromatogr B. 2013;930:98–103.

    Article  CAS  Google Scholar 

  58. Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, et al. Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta. 2011;56:4595–602.

  59. Hu XR, Chang KK, Wang S, Sun XQ, Hu JD, Jiang M. Aptamer-functionalized AuNPs for the high sensitivity colorimetric detection of melamine in milk samples. PLoS One. 2018;13:e0201626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hao XJ, Zhou XH, Zhang Y, Liu LH, Long F, Song L, et al. Melamine detection in dairy products by using a reusable evanescent wave fiber-optic biosensor. Sensors Actuators B Chem. 2014;204:682–7.

    Article  CAS  Google Scholar 

  61. Guo HL, Zhou XH, Zhang Y, Song BD, Zhang JX, Shi HC. Highly sensitive and simultaneous detection of melamine and aflatoxin M1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI). Food Chem. 2016;197:359–66.

    Article  CAS  PubMed  Google Scholar 

  62. Gu CM, Xiang Y, Guo HL, Shi HC. Label-free fluorescence detection of melamine with a truncated aptamer. Analyst. 2016;141:4511–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 31571919), and the Modern Agriculture Project of the Jilin Province-University Coconstruction Scheme (no. SF2017-6-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiehua Zhang or Chunyan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/ or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Zheng, H., Dong, S. et al. Facile detection of melamine by a FAM–aptamer–G-quadruplex construct. Anal Bioanal Chem 411, 2521–2530 (2019). https://doi.org/10.1007/s00216-019-01688-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01688-3

Keywords

Navigation