Skip to main content

Advertisement

Log in

A rapid bioanalytical tool for detection of sequence-specific circular DNA and mitochondrial DNA point mutations

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mutations in mitochondrial DNA (mtDNA) have been an essential cause of numerous diseases, making their identification critically important. The majority of mtDNA screening techniques require polymerase chain reaction (PCR) amplification, enzymatic digestion, and denaturation procedures, which are laborious and costly. Herein, we developed a sensitive PCR-free electrokinetic-based sensor combined with a customized bis-peptide nucleic acid (bis-PNA) and gamma-PNA (γ-PNA) probes immobilized on beads, for the detection of mtDNA point mutations and sequence-specific supercoiled plasmid DNA at the picomolar range. The probes are capable of invading the double-stranded circular DNA and forming a stable triplex structure. Thus, this method can significantly reduce the sample preparation and omit the PCR amplification steps prior to sensing. Further, this bioanalytical tool can open up a new paradigm in clinical settings for the screening of double-stranded circular nucleic acids with a single-base mismatch specificity in a rapid and sensitive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andersson GE, Karlberg O, Canbäck B, Kurland CG. On the origin of mitochondria: a genomics perspective. Philos Trans Royal Soc B Biol Sci. 2003;358(1429):165–79.

  2. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parr RL, Martin LH. Mitochondrial and nuclear genomics and the emergence of personalized medicine. Hum Genomics. 2012;6(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melton T, Nelson K. Forensic mitochondrial DNA analysis: two years of commercial casework experience in the United States. Croat Med J. 2001;42(3):298–303.

    CAS  PubMed  Google Scholar 

  5. Palo JU, Hedman M, Söderholm N, Sajantila A. Repatriation and identification of Finnish World War II soldiers. Croat Med J. 2007;48(4):528.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Meierhofer D, Mayr JA, Ebner S, Sperl W, Kofler B. Rapid screening of the entire mitochondrial DNA for low-level heteroplasmic mutations. Mitochondrion. 2005;5(4):282–96.

    Article  CAS  PubMed  Google Scholar 

  7. Wong L-JC, Chen T-J, Tan D-J. Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis. Electrophoresis. 2004;25(15):2602–10.

    Article  CAS  PubMed  Google Scholar 

  8. Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, et al. A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Bioph Res Co. 2006;342(2):387–93.

    Article  CAS  Google Scholar 

  9. Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet. 2010;87(2):237–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, et al. The human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res. 2004;14(5):812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor P, Manage DP, Helmle KE, Zheng Y, Glerum DM, Backhouse CJ. Analysis of mitochondrial DNA in microfluidic systems. J Chromatogr B. 2005;822(1):78–84.

    Article  CAS  Google Scholar 

  12. Shi M, Zheng J, Tan Y, Tan G, Li J, Li Y, et al. Ultrasensitive detection of single nucleotide polymorphism in human mitochondrial DNA utilizing ion-mediated cascade surface-enhanced Raman spectroscopy amplification. Anal Chem. 2015;87(5):2734–40.

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Hu N, Peng J, Chen L, Weng J. Ultrasensitive detection of mitochondrial DNA mutation by graphene oxide/DNA hydrogel electrode. Adv Funct Mater. 2014;24(44):6905–13.

    Article  CAS  Google Scholar 

  14. Song Y, Gyarmati P, Araújo AC, Lundeberg J, Brumer H, Ståhl PL. Visual detection of DNA on paper chips. Anal Chem. 2014;86(3):1575–82.

    Article  CAS  PubMed  Google Scholar 

  15. Chang C-M, Chiu L-F, Wang P-W, Shieh D-B, Lee G-B. A microfluidic system for fast detection of mitochondrial DNA deletion. Lab Chip. 2011;11(16):2693–700.

    Article  CAS  PubMed  Google Scholar 

  16. Chang C-M, Chiu L-F, Wei Y-H, Shieh D-B, Lee G-B. Integrated three-dimensional system-on-chip for direct quantitative detection of mitochondrial DNA mutation in affected cells. Biosens Bioelectron. 2013;48:6–11.

    Article  CAS  PubMed  Google Scholar 

  17. Esfandiari L, Monbouquette HG, Schmidt JJ. Sequence-specific nucleic acid detection from binary pore conductance measurement. J Am Chem Soc. 2012;134(38):15880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Esfandiari L, Lorenzini M, Kocharyan G, Monbouquette HG, Schmidt JJ. Sequence-specific DNA detection at 10 fM by electromechanical signal transduction. Anal Chem. 2014;86(19):9638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Rana A, Stratton Y, Czyzyk-Krzeska MF, Esfandiari L. Sequence-specific detection of MicroRNAs related to clear cell renal cell carcinoma at fM concentration by an electroosmotically driven nanopore-based device. Anal Chem. 2017;89(17):9201–8.

    Article  CAS  PubMed  Google Scholar 

  20. Esfandiari L, Wang S, Wang S, Banda A, Lorenzini M, Kocharyan G, et al. PCR-independent detection of bacterial species-specific 16S rRNA at 10 fM by a pore-blockage sensor. Biosensors. 2016;6(3):37.

    Article  CAS  PubMed Central  Google Scholar 

  21. Green MR, Sambrook J, Sambrook J. Molecular cloning: a laboratory manual, 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012. p.1233–37.

  22. Smith MF, Delbary-Gossart S. Electrophoretic mobility shift assay (EMSA). In: M S, editor. Colorectal Cancer: methods and protocols. Totowa: Humana Press; 2001. p. 249–57.

    Google Scholar 

  23. Nielsen PE. Targeting double-stranded DNA with peptide nucleic acid (PNA). Curr Med Chem. 2000;8(5):545–50.

  24. Kuhn H, Sahu B, Rapireddy S, Ly DH, Frank-Kamenetskii MD. Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases. Aritf DNA PNA XNA. 2010;1(1):45–53.

    Article  Google Scholar 

  25. Zelphati O, Liang X, Hobart P, Felgner PL. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum Gene Ther. 1999;10(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Peterson KR, Iancu-Rubin C, Bieker JJ. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo. Proc Natl Acad Sci. 2010;107(39):16846–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coull J, Deuholm KL, Christensen L, Egholm M, Buchardt O, Nielsen PE. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995;23(2):217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem. 2011;76(14):5614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu Y, Lin C-Y, Hinkle P, Plett TS, Yang C, Chacko JV, et al. Highly charged particles cause a larger current blockage in micropores compared to neutral particles. ACS Nano. 2016;10(9):8413–22.

    Article  CAS  PubMed  Google Scholar 

  30. Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226(2):274–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Shiyu Luo from Dr. Huang’s group for the generous help on mitochondrial DNA preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Esfandiari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kaynak, A., Huang, T. et al. A rapid bioanalytical tool for detection of sequence-specific circular DNA and mitochondrial DNA point mutations. Anal Bioanal Chem 411, 1935–1941 (2019). https://doi.org/10.1007/s00216-019-01683-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01683-8

Keywords

Navigation