Skip to main content
Log in

2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optical sensing gadget using fluorescence of carbon dots (CDs) was developed to realize the in-field detection of 2,4,6-trinitrophenol (TNP) in tap water and lake water samples. Fluorescent CDs were prepared through a one-step hydrothermal synthetic route. The fluorescence spectra demonstrated that the CDs could specifically discriminate TNP from other nitroaromatic explosives in an aqueous medium. The fluorescence of the CDs was quenched linearly with the concentration of TNP in the range from 1 to 100 μM, with a detection limit of 0.48 μM (3σ/k). The detection mechanism was ascribed to the synergistic effect of the inner filter effect and electron transfer. In addition, a portable sensing gadget based on a high-precision RGB color sensor and a micro control unit was developed. With use of the sensing gadget and the CDs, TNP detection in tap water and lake water samples was realized. Importantly, the portable sensing gadget combined with highly stable, low-toxicity, and sensitive CDs might have great potential for application in extensive in-field sensing situations.

Carbon dots synthesized with 4-(diethylamino)salicylaldehyde as the initial material were used for 2,4,6-trinitrophenol (TNP) detection. TNP quenches the fluorescence of carbon dots, and the mechanism is ascribed to the synergistic effect of the inner filter effect and electron transfer. A portable sensing gadget based on a 32-bit micro control unit was successfully applied for in-field TNP detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fu ZH, Wang YW, Peng Y. Two fluorescein-based chemosensors for the fast detection of 2,4,6-trinitrophenol (TNP) in water. Chem Commun. 2017;53:10524–7.

    Article  CAS  Google Scholar 

  2. Rong M, Lin SX, Zhao T, Zhong YJ, Wang Y, Chen X. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem. 2015;87:1288–96.

    Article  CAS  PubMed  Google Scholar 

  3. Das P, Mandal SK. Understanding the effect of an amino group on the selective and ultrafast detection of TNP in water using fluorescent organic probes. J Mater Chem C. 2018;6:3288–97.

    Article  CAS  Google Scholar 

  4. Ahmed M, Hameed S, Ihsan A, Naseer MM. Fluorescent thiazol-substituted pyrazoline nanoparticles for sensitive and highly selective sensing of explosive 2,4,6-trinitrophenol in aqueous medium. Sensors Actuators B Chem. 2017;248:57–62.

    Article  CAS  Google Scholar 

  5. Chen Z, Tao Z, Cong S, Hou J, Zhang D, Geng F, et al. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection. Chem Commun. 2016;52:11442–5.

    Article  CAS  Google Scholar 

  6. Zhu M, Xu S, Wang X, Chen Y, Dai L, Zhao X. The construction of fluorescent heteropore covalent organic frameworks and their applications in spectroscopic and visual detection of trinitrophenol with high selectivity and sensitivity. Chem Commun. 2018;54:2308–11.

    Article  CAS  Google Scholar 

  7. Peng Y, Zhang AJ, Dong M, Wang YW. A colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP). Chem Commun. 2011;47:4505–7.

    Article  CAS  Google Scholar 

  8. Kaur M, Mehta SK, Kansal SK. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium. Spectrochim Acta A. 2017;180:37–43.

    Article  CAS  Google Scholar 

  9. United States Environmental Protection Agency. Technical fact sheet – 2,4,6-trinitrotoluene (TNT). EPA 505-F-14-009. US Environmental Protection Agency; 2014.

  10. Huynh T, Wojnarowicz A, Kelm A, Woznicki P, Borowicz P, Majka A, et al. Chemosensor for selective determination of 2,4,6-trinitrophenol using a custom designed imprinted polymer recognition unit cross-linked to a fluorophore transducer. ACS Sens. 2016;1:636–9.

    Article  CAS  Google Scholar 

  11. Ni JC, Yan J, Zhang LJ, Shang D, Du D, Li S, et al. Bifunctional fluorescent quenching detection of 2,4,6-trinitrophenol (TNP) and acetate ions via 4,40-(9,9-dimethyl-9H-fluorene-2,7-diyl) dibenzoic acid. Tetrahedron Lett. 2016;57:4978–82.

    Article  CAS  Google Scholar 

  12. Wang Y, Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem. 2014;86:7463–70.

    Article  CAS  PubMed  Google Scholar 

  13. Barron L, Gilchrist E. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta. 2014;806:27–54.

    Article  CAS  PubMed  Google Scholar 

  14. Berg M, Bolotin J, Hofstetter TB. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS. Anal Chem. 2007;79:2386–93.

    Article  CAS  PubMed  Google Scholar 

  15. Eiceman GA, Stone JA. Ion mobility spectrometers in national defence. Anal Chem. 2004;76:390–7.

    Google Scholar 

  16. Zhou H, Zhang Z, Jiang C, Guan G, Zhang K, Mei Q, et al. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Anal Chem. 2011;83:6913–7.

    Article  CAS  PubMed  Google Scholar 

  17. Wells K, Bradley DA. A review of X-ray explosives detection techniques for checked baggage. Appl Radiat Isot. 2012;70:1729–46.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–39.

    Article  CAS  Google Scholar 

  19. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–81.

    Article  CAS  Google Scholar 

  20. Huang H, Wei H, Zou M, Xu X, Xia B, Liu F, et al. Modulating fluorescence anisotropy of terminally labeled double-stranded DNA via the interaction between dye and nucleotides for rational design of DNA recognition based applications. Anal Chem. 2015;87:2748–54.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu G, Li Y, Zhang CY. Simultaneous detection of mercury(II) and silver(I) ions with picomolar sensitivity. Chem Commun. 2014;50:572–4.

    Article  CAS  Google Scholar 

  22. Meaney MS, McGuffin VL. Luminescence-based methods for sensing and detection of explosives. Anal Bioanal Chem. 2008;391:2557–76.

    Article  CAS  PubMed  Google Scholar 

  23. Deng X, Huang X, Wu D. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Anal Bioanal Chem. 2015;407:4607–13.

    Article  CAS  PubMed  Google Scholar 

  24. Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson CH, et al. Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Anal Bioanal Chem. 2003;375:471–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Du LY, Ma L, Zhao Q. Selective sensing of 2,4,6-trinitrophenol and detection of the ultralow temperature based on a dual-functional MOF as a luminescent sensor. Inorg Chem Commun. 2016;68:45–9.

    Article  CAS  Google Scholar 

  26. Li H, Chang J, Hou T, Ge L, Li F. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters. Talanta. 2016;160:475–80.

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh P, Banerjee P. Small molecular probe as selective tritopic sensor of Al3+, F- and TNP: fabrication of portable prototype for onsite detection of explosive TNP. Anal Chim Acta. 2017;205:111–22.

    Article  CAS  Google Scholar 

  28. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89:3001–8.

    Article  CAS  PubMed  Google Scholar 

  29. Liu ML, Chen BB, Liu ZX, Huang CZ. Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue-green photoluminescent carbon nanodots. Talanta. 2016;161:875–80.

    Article  CAS  PubMed  Google Scholar 

  30. Chen BB, Liu ZX, Zou HY, Huang CZ. Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst. 2016;141:2676–81.

    Article  CAS  PubMed  Google Scholar 

  31. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart LK, Raker W, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.

    Article  CAS  Google Scholar 

  32. Wang R, Li G, Dong Y, Chi Y, Chen G. Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem. 2013;85:8065–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun M, Yu H, Zhang K, Zhang Y, Yan Y, Huang D, et al. Determination of gaseous sulfur dioxide and its derivatives via fluorescence enhancement based on cyanine dye functionalized carbon nanodots. Anal Chem. 2014;86:9381–5.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta A, Verma NC, Khan S, Nandi CK. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron. 2016;81:465–72.

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Liu J, Yang T, Chen L, Hou J, Feng C, et al. Development of a portable device for Ag+ sensing using CdTe QDs as fluorescence probe via an electron transfer process. Talanta. 2019;191:357–63.

    Article  CAS  PubMed  Google Scholar 

  36. Gao X, Lu Y, Zhang R, He S, Ju J, Liu M, et al. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+ -induced enhancement of fluorescence. J Mater Chem C. 2015;3:2302–9.

    Article  CAS  Google Scholar 

  37. Han L, Liu SG, Dong JX, Liang JY, Li LJ, Li NB, et al. Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. J Mater Chem C. 2017;5:10785–93.

    Article  CAS  Google Scholar 

  38. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, et al. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B Chem. 2017;240:949–55.

    Article  CAS  Google Scholar 

  39. Luo PG, Sahu S, Yang S, Sonkar SK, Wang JP, Wang HF, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1:2116–27.

    Article  CAS  Google Scholar 

  40. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015–39.

    Article  CAS  PubMed  Google Scholar 

  41. Park Y, Yoo J, Lim B, Kwon W, Rhee SW. Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A. 2016;4:11582–603.

    Article  CAS  Google Scholar 

  42. Hutton GAM, Martindale BCM, Reisner E. Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev. 2017;46:6111–23.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, et al. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale. 2016;8:6770–6.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Li RS, Zhang HZ, Wang N, Zhang Z, Huang CZ. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron. 2017;97:157–63.

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Liu H, Ren X. Ratiometric fluorescence and mesoporous structured imprinting nanoparticles for rapid and sensitive detection 2,4,6-trinitrophenol. Biosens Bioelectron. 2017;89:899–905.

    Article  CAS  PubMed  Google Scholar 

  46. Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum; 1999.

    Book  Google Scholar 

  47. Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3 +. Anal Chem. 2014;86:10201–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu A, Qu Q, Shao X, Kong B, Tian Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem. 2012;124:7297–301.

    Article  Google Scholar 

  49. Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem. 2014;86:9846–52.

    Article  CAS  PubMed  Google Scholar 

  50. Dinda D, Gupta A, Shaw BK, Sadhu S, Saha SK. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl Mater Interfaces. 2014;6:10722–8.

    Article  CAS  PubMed  Google Scholar 

  51. Hou J, Tian Z, Xie H, Tian Q, Ai S. A fluorescence resonance energy transfer sensor based on quaternized carbon dots and Ellman’s test for ultrasensitive detection of dichlorvos. Sensors Actuators B Chem. 2016;232:477–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 21535006, grant no. 61801400, and grant no. 61703348), the Fundamental Research Funds for the Central Universities (grant no. XDJK2018C021, and Japan Society for the Promotion of Science KAKENHI (grant no. JP18F18392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Chen or Chengzhi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Chai, S., Liu, J. et al. 2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe. Anal Bioanal Chem 411, 2291–2300 (2019). https://doi.org/10.1007/s00216-019-01670-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01670-z

Keywords

Navigation