Skip to main content
Log in

Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX), an anthracycline molecule, is currently one of the most widely used anticancer drugs in clinics. Systematic treatment of patients with DOX is known to be accompanied by several unpleasant side effects due to the toxicity of the drug. Thus, monitoring of DOX concentration in serum samples has become increasingly important to avoid side effects and ensure therapeutic efficiency. In this study, we discuss the construction of a disposable electrochemical sensor for the direct monitoring of DOX in clinical blood samples. The sensor is based on coating a gold electrode in a flexible integrated electrode construct formed on polyimide sheets using photolithography, with nitrogen-doped reduced graphene oxide (N-rGO) suspended in chitosan. Under optimized conditions, a linear relationship between the oxidative peak current and the concentration of DOX in the range of 0.010–15 μM with a detection limit of 10 nM could be achieved. The sensor was adapted to monitor DOX in serum samples of patients under anticancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berry G, Billingham M, Alderman E, Richardson P, Torti F, Lum B, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol. 1998;9:711–6.

    Article  CAS  PubMed  Google Scholar 

  2. Charrois GJ, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta. 2004;166-177:167.

    Article  CAS  Google Scholar 

  3. Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol. 2000;136:1475–80.

    Article  CAS  PubMed  Google Scholar 

  4. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pai V, Nahata M. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22:263–302.

    Article  CAS  PubMed  Google Scholar 

  6. Shah M, Bourner L, Ali S, Al-Enazy S, Youssef MM, Fisler M, et al. HPLC method development for quantification of doxorubicin in cell culture and placental perfusion media. Separations. 2018;5:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnold RD, Slack JE, Straubinger RM. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B. 2004;808:141–52.

    Article  CAS  Google Scholar 

  8. Motlagh NSH, Parvin P, Ghasemi F, Atyabi F. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin. Biomed Opt Express. 2016;7:2400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaney EN, Baldwin RP. Voltammetric determination of doxorubicin in urine by adsorption preconcentration and flow inject analysis. Anal Chim Acta. 1985;176:105–12.

    Article  CAS  Google Scholar 

  10. Hajian R, Tayebn Z, Shams N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal. 2017;7:27–33.

    Article  PubMed  Google Scholar 

  11. Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal. 2016;6:235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rezai B, Askarpour N, Ensafi AA. A novel sensitive doxorubicin impedimetrid immunosensor based on a specific monoclonal antibody gold nanoparticle sol-gel modified electrode. Talanta. 2014;119:164–9.

    Article  CAS  Google Scholar 

  13. Vajdle O, Zbiljić J, Tasić B, Jović D, Guzsvány V, Djordjevic A. Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Electrochim Acta. 2014;132:49–57.

    Article  CAS  Google Scholar 

  14. He L, Sarka S, Barras A, Boukherroub R, Szunerits S, Mandler D. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem Commun. 2017;53:4022–5.

    Article  CAS  Google Scholar 

  15. Kaur M, Kaur M, Sharma VK. Nitrogen-doped graphene and graphene quantum dots: a review on synthesis and applications in energy, sensors and environment. Adv Colloid Interf Sci. 2018;259:44.

    Article  CAS  Google Scholar 

  16. Chekin F, Vasilescu A, Jijie R, Singh SK, Kurungot S, Iancu M, et al. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sensors Actuators B Chem. 2018;262:180–7.

    Article  CAS  Google Scholar 

  17. Vasilescu A, Ye R, Boulahneche S, Lamraoui S, Jijie R, Medjram MS, et al. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: application to the analysis of calcitonin containing pharmaceutical formulation. Electrochim Acta. 2018;266:364–72.

    Article  CAS  Google Scholar 

  18. Singh SK, Dhavale VM, Boukherroub R, Kurungot S, Szunerits S. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl Mater Today. 2017;8:141–9.

    Article  Google Scholar 

  19. Hung W-S, Chang S-M, Lecaros RLG, Ji Y-L, An Q-F, Hu C-C, et al. Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration. Carbon. 2017;117:112–9.

    Article  CAS  Google Scholar 

  20. Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery. Int J Pharm. 2010;393:177–85.

    Article  CAS  Google Scholar 

  21. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.

    Article  CAS  PubMed  Google Scholar 

  22. Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab M, Jalil J, Gharamaleki V, et al. A new kinetic mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C. 2016;61:638–50.

    Article  CAS  Google Scholar 

  23. Peng A, Xu H, Luo C, Ding H. Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int J Electrochem Sci. 2016;11:6266–78.

    Article  CAS  Google Scholar 

Download references

Funding

Financial supports from the Centre National de la Recherche Scientifique (CNRS), the University of Lille, the Hauts-de-France region, the CPER “Photonics for Society”, and the joint support of Agence Nationale de la Recherche (ANR) and the Belgian F.R.S. - FNRS through FLAG-ERA JTC 2015-Graphtivity project are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fereshteh Chekin or Sabine Szunerits.

Ethics declarations

Human serum samples, obtained from venous blood collected from a peripheral vein, were kindly provided by the CHU Lille with consent of all individual participants, and approved by the Hospital’s Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekin, F., Myshin, V., Ye, R. et al. Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Anal Bioanal Chem 411, 1509–1516 (2019). https://doi.org/10.1007/s00216-019-01611-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01611-w

Keywords

Navigation