Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 10, pp 1943–1955 | Cite as

Succinylated Jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays

  • Jonas Bemetz
  • Catharina Kober
  • Verena K. Meyer
  • Reinhard Niessner
  • Michael SeidelEmail author
Paper in Forefront
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

Analytical microarrays feature great capabilities for simultaneous detection and quantification of multiple analytes in a single measurement. In this work, we present a rapid and simple method for bulk preparation of microarrays on polycarbonate sheets. Succinylated Jeffamine® ED-2003 was screen printed on polycarbonate sheets to create a polyfunctional shielding layer by baking at 100 °C. After microdispension of capture probes (antibodies, oligonucleotides, or small molecules) in a microarray format, chips were assembled with a flow cell from double-sided tape. It was shown that the shielding layer was firmly coated and suppressed unspecific binding of proteins. Universal applicability was demonstrated by transferring established flow-based chemiluminescence microarray measurement principles from glass slides to polycarbonate chips without loss of analytical performance. Higher chemiluminescence signals could be generated by performing heterogeneous asymmetric recombinase polymerase amplification on polycarbonate chips. Similar results could be shown for sandwich microarray immunoassays. Beyond that, lower inter- and intra-assay variances could be measured for the analysis of Legionella pneumophila Serogroup 1, strain Bellingham-1. Even surface regeneration of indirect competitive immunoassays was possible, achieving a limit of detection of 0.35 ng L−1 for enrofloxacin with polycarbonate microarray chips. Succinylated Jeffamine ED-2003 coated polycarbonate chips have great potential to replace microtiter plates by flow-based chemiluminescence microarrays for rapid analysis. Therefore, it helps analytical microarrays to advance into routine analysis and diagnostics.

Graphical abstract

Keywords

Microarray mass production Polymer microarray Flow-through assays Lab-on-foil 

Notes

Acknowledgements

The authors thank Dr. Christian Lück (Konsiliarlaboratorium für Legionellen, Dresden University of Technology) for providing the monoclonal antibody 10/6 specific for Legionella pneumophila serogroup 1 strain Bellingham-1 and Prof. Erwin Märtlbauer and Dr. Richard Dietrich (Chair for Hygiene and Technology of Milk, Ludwig-Maximilians-Universität München) for providing the monoclonal antibody mAb 1F7 reactive against clinafloxicin and enrofloxacin. The authors also thank Dr. Thomas Baumann (Institute of Hydrochemistry and Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich) for the advice on image processing and analysis.

Funding information

This work was funded by Bundesministerium für Bildung und Forschung (BMBF) – LegioTyper (FKZ: 13N13698) and received partial support from Hanns Seidel Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Kober C, Niessner R, Seidel M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosens Bioelectron. 2018;100:49–55.CrossRefGoogle Scholar
  2. 2.
    Seidel M, Niessner R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem. 2014;406(23):5589–612.CrossRefGoogle Scholar
  3. 3.
    Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Märtlbauer E, Niessner R, et al. A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. Analyst. 2009;134(7):1433–9.CrossRefGoogle Scholar
  4. 4.
    Sola L, Álvarez J, Cretich M, Swann MJ, Chiari M, Hill D. Characterization of porous alumina membranes for efficient, real-time, flow through biosensing. J Membr Sci. 2015;476:128–35.CrossRefGoogle Scholar
  5. 5.
    Bañuls MJ, Morais SB, Tortajada-Genaro LA, Maquieira A. Microarray developed on plastic substrates. In: Li PC, Sedighi A, Wang L, editors. Microarray Technology. Berlin: Springer; 2015.Google Scholar
  6. 6.
    Besmer MD, Epting J, Page RM, Sigrist JA, Huggenberger P, Hammes F. Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment. Sci Rep. 2016;6:38462–72.CrossRefGoogle Scholar
  7. 7.
    Grover D, Zhang Z, Readman J, Zhou J. A comparison of three analytical techniques for the measurement of steroidal estrogens in environmental water samples. Talanta. 2009;78(3):1204–10.CrossRefGoogle Scholar
  8. 8.
    Smart AS, Tingley R, Weeks AR, van Rooyen AR, McCarthy MA. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol Appl. 2015;25(7):1944–52.CrossRefGoogle Scholar
  9. 9.
    Longwell CK, Labanieh L, Cochran JR. High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol. 2017;48:196–202.CrossRefGoogle Scholar
  10. 10.
    Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9.CrossRefGoogle Scholar
  11. 11.
    Gao H, Liu M, Zhou X, Liu J, Zhuo Y, Gou Z, et al. Identification of avermectin-high-producing strains by high-throughput screening methods. Appl Microbiol Biotechnol. 2010;85(4):1219–25.CrossRefGoogle Scholar
  12. 12.
    Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL. A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett. 2005;27(15):1135–40.CrossRefGoogle Scholar
  13. 13.
    Tronser T, Popova AA, Levkin PA. Miniaturized platform for high-throughput screening of stem cells. Curr Opin Biotechnol. 2017;46:141–9.CrossRefGoogle Scholar
  14. 14.
    Gong P, Grainger DW, Surfaces N. In: Rampal JB, editor. Microarrays: volume 1: synthesis methods. Totowa, NJ: Humana Press; 2007. p. 59–92.Google Scholar
  15. 15.
    Cretich M, Damin F, Chiari M. Protein microarray technology: how far off is routine diagnostics? Analyst. 2013;139(3):528–42.CrossRefGoogle Scholar
  16. 16.
    Wolter A, Niessner R, Seidel M. Preparation and characterization of functional poly (ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem. 2007;79(12):4529–37.CrossRefGoogle Scholar
  17. 17.
    Mehne J, Markovic G, Pröll F, Schweizer N, Zorn S, Schreiber F, et al. Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem. 2008;391(5):1783–91.CrossRefGoogle Scholar
  18. 18.
    Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G. A high-density poly (ethylene glycol) polymer brush for immobilization on glass-type surfaces. Biosens Bioelectron. 2000;15(9–10):473–81.CrossRefGoogle Scholar
  19. 19.
    Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B. 1998;102(2):426–36.CrossRefGoogle Scholar
  20. 20.
    Kunze A, Dilcher M, Abd El Wahed A, Hufert F, Niessner R, Seidel M. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem. 2015;88(1):898–905.CrossRefGoogle Scholar
  21. 21.
    Wunderlich A, Torggler C, Elsässer D, Lück C, Niessner R, Seidel M. Rapid quantification method for Legionella pneumophila in surface water. Anal Bioanal Chem. 2016;408(9):2203–13.CrossRefGoogle Scholar
  22. 22.
    Sievers S, Cretich M, Gagni P, Ahrens B, Grishina G, Sampson H, et al. Performance of a polymer coated silicon microarray for simultaneous detection of food allergen-specific IgE and IgG4. Clin Exp Allergy. 2017;47(8):1057–68.CrossRefGoogle Scholar
  23. 23.
    Chen TF, Siow KS, Ng PY, Nai MH, Lim CT, Yeop Majlis B. Ageing properties of polyurethane methacrylate and off-stoichiometry thiol-ene polymers after nitrogen and argon plasma treatment. J Appl Polym Sci 2016;133(42).Google Scholar
  24. 24.
    Seidel M, Dankbar DM, Gauglitz G. A miniaturized heterogeneous fluorescence immunoassay on gold-coated nano-titer plates. Anal Bioanal Chem. 2004;379(7–8):904–12.Google Scholar
  25. 25.
    Sola L, Damin F, Gagni P, Consonni R, Chiari M. Synthesis of clickable coating polymers by postpolymerization modification: applications in microarray technology. Langmuir. 2016;32(40):10284–95.CrossRefGoogle Scholar
  26. 26.
    Gori A, Cretich M, Vanna R, Sola L, Gagni P, Bruni G, et al. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Anal Chim Acta. 2017;983:189–97.CrossRefGoogle Scholar
  27. 27.
    Tamarit-López J, Morais S, Puchades R, Maquieira A. Oxygen plasma treated interactive polycarbonate DNA microarraying platform. Bioconjug Chem. 2011;22(12):2573–80.CrossRefGoogle Scholar
  28. 28.
    Li Y, Wang Z, Ou L, Yu HZ. DNA detection on plastic: surface activation protocol to convert polycarbonate substrates to biochip platforms. Anal Chem. 2007;79(2):426–33.CrossRefGoogle Scholar
  29. 29.
    Rowinska M, Kelleher S, Soberon F, Ricco A, Daniels S. Fabrication and characterisation of spin coated oxidised PMMA to provide a robust surface for on-chip assays. J Mater Chem B. 2015;3(1):135–43.CrossRefGoogle Scholar
  30. 30.
    Ahn J, Shin Y-B, Chang W-S, Kim M-G. Sequential patterning of two fluorescent streptavidins assisted by photoactivatable biotin on an aminodextran-coated surface. Colloids Surf B. 2011;87(1):67–72.CrossRefGoogle Scholar
  31. 31.
    Papp K, Holczer E, Kecse-Nagy C, Szittner Z, Lóránd V, Rovero P, et al. Multiplex determination of antigen specific antibodies with cell binding capability in a self-driven microfluidic system. Sensors Actuators B Chem. 2017;238:1092–7.CrossRefGoogle Scholar
  32. 32.
    Jang M, Park CK, Lee NY. Modification of polycarbonate with hydrophilic/hydrophobic coatings for the fabrication of microdevices. Sensors Actuators B Chem. 2014;193:599–607.CrossRefGoogle Scholar
  33. 33.
    Wessig P, Bendig J, Schedler U (2004) Surface-functionalised carrier material, method for the production thereof and solid phase synthesis method. EP1355978B1.Google Scholar
  34. 34.
    Dankbar DM, Gauglitz G. A study on photolinkers used for biomolecule attachment to polymer surfaces. Anal Bioanal Chem. 2006;386(7–8):1967–74.CrossRefGoogle Scholar
  35. 35.
    Jankowski P, Ogonczyk D, Kosinski A, Lisowski W, Garstecki P. Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip. 2010;11(4):748–52.CrossRefGoogle Scholar
  36. 36.
    Péter M, Schüler T, Furthner FO, Rensing PA, van Heck GT, Schoo HF, et al. Flexible biochips for detection of biomolecules. Langmuir. 2009;25(9):5384–90.CrossRefGoogle Scholar
  37. 37.
    Schüler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Möller R, et al. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Biosens Bioelectron. 2009;25(1):15–21.CrossRefGoogle Scholar
  38. 38.
    Wünscher S, Seise B, Pretzel D, Pollok S, Perelaer J, Weber K, et al. Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes. Lab Chip. 2014;14(2):392–401.CrossRefGoogle Scholar
  39. 39.
    Ohlander A, Zilio C, Hammerle T, Zelenin S, Klink G, Chiari M, et al. Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip. 2013;13(11):2075–82.CrossRefGoogle Scholar
  40. 40.
    Van Zant P. Microchip fabrication: a practical guide to semiconductor processing. McGraw-Hill; 2001.Google Scholar
  41. 41.
    Kloth K, Niessner R, Seidel M. Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron. 2009;24(7):2106–12.CrossRefGoogle Scholar
  42. 42.
    Lengger S, Otto J, Elsässer D, Schneider O, Tiehm A, Fleischer J, et al. Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem. 2014;406(14):3323–34.CrossRefGoogle Scholar
  43. 43.
    Zhu H, Qian J. Applications of functional protein microarrays in basic and clinical research. Advances in genetics Elsevier; 2012. p. 123–55.Google Scholar
  44. 44.
    Angenendt P. Progress in protein and antibody microarray technology. Drug Discov Today. 2005;10(7):503–11.CrossRefGoogle Scholar
  45. 45.
    Puetz J, Aegerter M. Dip coating technique. In: Aegerter MA, Mennig M, editors. Sol-Gel Technologies for Glass Producers and Users. Boston: Springer; 2004. p. 37–48.CrossRefGoogle Scholar
  46. 46.
    Sui X, Zapotoczny S, Benetti EM, Schön P, Vancso GJ. Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. J Mater Chem. 2010;20(24):4981–93.CrossRefGoogle Scholar
  47. 47.
    Panzarasa G. The art and science of polymer brushes: recent developments in patterning and characterization approaches. Chimia. 2017;71(6):354–8.CrossRefGoogle Scholar
  48. 48.
    Gong P, Levicky R. DNA surface hybridization regimes. Proc Natl Acad Sci. 2008;105(14):5301–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jonas Bemetz
    • 1
  • Catharina Kober
    • 1
  • Verena K. Meyer
    • 1
  • Reinhard Niessner
    • 1
  • Michael Seidel
    • 1
    Email author
  1. 1.Institute of Hydrochemistry, Chair of Analytical Chemistry and Water ChemistryTechnical University of MunichMunichGermany

Personalised recommendations