Skip to main content

Advertisement

Log in

GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For the study of different levels of (intra)cellular regulation and condition-dependent insight into metabolic activities, fluxomics experiments based on stable isotope tracer experiments using 13C have become a well-established approach. The experimentally obtained non-naturally distributed 13C labeling patterns of metabolite pools can be measured by mass spectrometric detection with front-end separation and can be consequently incorporated into biochemical network models. Here, despite a tedious derivatization step, gas chromatographic separation of polar metabolites is favorable because of the wide coverage range and high isomer separation efficiency. However, the typically employed electron ionization energy of 70 eV leads to significant fragmentation and consequently only low-abundant ions with an intact carbon backbone. Since these ions are considered a prerequisite for the analysis of the non-naturally distributed labeling patterns and further integration into modeling strategies, a softer ionization technique is needed. In the present work, a novel low energy electron ionization source is optimized for the analysis of primary metabolites and compared with a chemical ionization approach in terms of trueness, precision, and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006;2:62. https://doi.org/10.1038/msb4100109.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wiechert W. 13C metabolic flux analysis. Metab Eng. 2001;3:195–206. https://doi.org/10.1006/mben.2001.0187.

    Article  CAS  PubMed  Google Scholar 

  3. Antoniewicz MR. 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol. 2013;24:1116–21. https://doi.org/10.1016/j.copbio.2013.02.003.

    Article  CAS  PubMed  Google Scholar 

  4. Tam YY, Normanly J. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography–selected ion monitoring-mass spectrometry. J Chromatogr A. 1998;800:101–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fiehn O, Kopka J, Trethewey RN, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem. 2000;72:3573–80. https://doi.org/10.1021/ac991142i.

    Article  CAS  PubMed  Google Scholar 

  6. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56:219–43. https://doi.org/10.1093/jxb/eri069.

    Article  CAS  PubMed  Google Scholar 

  7. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48. https://doi.org/10.1021/ac9019522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Winden WA, Wittmann C, Heinzle E, Heijnen JJ. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng. 2002;80:477–9. https://doi.org/10.1002/bit.10393.

    Article  CAS  PubMed  Google Scholar 

  9. Millard P, Letisse F, Sokol S, Portais J-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics. 2012;28:1294–6. https://doi.org/10.1093/bioinformatics/bts127.

    Article  CAS  PubMed  Google Scholar 

  10. Jungreuthmayer C, Neubauer S, Mairinger T, Zanghellini J, Hann S. ICT: isotope correction toolbox. Bioinformatics. 2015;32:154–6. https://doi.org/10.1093/bioinformatics/btv514.

    Article  CAS  PubMed  Google Scholar 

  11. Cipollina C, ten Pierick A, Canelas AB, Seifar RM, van Maris AJA, van Dam JC, et al. A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC–IDMS. J Chromatogr B. 2009;877:3231–6. https://doi.org/10.1016/j.jchromb.2009.07.019.

    Article  CAS  Google Scholar 

  12. Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M. Simplified absolute metabolite quantification by gas chromatography–isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B. 2011;879:3859–70. https://doi.org/10.1016/j.jchromb.2011.10.036.

    Article  CAS  Google Scholar 

  13. Chu DB, Troyer C, Mairinger T, Ortmayr K, Neubauer S, Koellensperger G, et al. Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2015;407:2865–75. https://doi.org/10.1007/s00216-015-8521-9.

    Article  CAS  PubMed  Google Scholar 

  14. Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–28. https://doi.org/10.1007/s11306-010-0254-3.

    Article  CAS  PubMed  Google Scholar 

  15. Nocon J, Steiger M, Mairinger T, Hohlweg J, Rußmayer H, Hann S, et al. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol. 2016;100:5955–63. https://doi.org/10.1007/s00253-016-7363-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ata Ö, Rebnegger C, Tatto NE, Valli M, Mairinger T, Hann S, et al. A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nat Commun. 2018;9:4911. https://doi.org/10.1038/s41467-018-07430-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Li Y, Chen W, Cao Q, Guo Y, Wan N, et al. Integrating MS1 and MS2 scans in high-resolution parallel reaction monitoring assays for targeted metabolite quantification and dynamic 13C-labeling metabolism analysis. Anal Chem. 2017;89:877–85. https://doi.org/10.1021/acs.analchem.6b03947.

    Article  CAS  PubMed  Google Scholar 

  18. Kappelmann J, Klein B, Geilenkirchen P, Noack S. Comprehensive and accurate tracking of carbon origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA. Anal Bioanal Chem. 2017;409:2309–26. https://doi.org/10.1007/s00216-016-0174-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCloskey D, Young JD, Xu S, Palsson BO, Feist AM. MID Max: LC–MS/MS method for measuring the precursor and product mass isotopomer distributions of metabolic intermediates and cofactors for metabolic flux analysis applications. Anal Chem. 2016;88:1362–70. https://doi.org/10.1021/acs.analchem.5b03887.

    Article  CAS  PubMed  Google Scholar 

  20. Mairinger T, Steiger M, Nocon J, Mattanovich D, Koellensperger G, Hann S. Gas chromatography-quadrupole time-of-flight mass spectrometry-based determination of isotopologue and tandem mass isotopomer fractions of primary metabolites for 13C-metabolic flux analysis. Anal Chem. 2015;87:11792–802. https://doi.org/10.1021/acs.analchem.5b03173.

    Article  CAS  PubMed  Google Scholar 

  21. Maccoll A. Low energy, low temperature mass spectra. 6—a synoptic view. Org Mass Spectrom. 1986;21:601–11. https://doi.org/10.1002/oms.1210211003.

    Article  CAS  Google Scholar 

  22. Abebe M, Maccoll A, Bowen RD. Low-energy, low-temperature mass spectra. Part 17: selected aliphatic amides. Eur Mass Spectrom. 1997;3:197–208. https://doi.org/10.1255/ejms.39.

    Article  CAS  Google Scholar 

  23. Millard P, Massou S, Portais J-C, Létisse F. Isotopic studies of metabolic systems by mass spectrometry: using Pascal’s triangle to produce biological standards with fully controlled labeling patterns. Anal Chem. 2014;86:10288–95. https://doi.org/10.1021/ac502490g.

    Article  CAS  PubMed  Google Scholar 

  24. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem. 2006;78:1272–81.

    Article  CAS  PubMed  Google Scholar 

  25. Magnusson B, Örnemark U, editors. Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2nd ed. 2014.

  26. Heuillet M, Bellvert F, Cahoreau E, Letisse F, Millard P, Portais J-C. Methodology for the validation of isotopic analyses by mass spectrometry in stable-isotope labeling experiments. Anal Chem. 2018;90:1852–60. https://doi.org/10.1021/acs.analchem.7b03886.

    Article  CAS  PubMed  Google Scholar 

  27. Mairinger T, Hann S. Implementation of data-dependent isotopologue fragmentation in 13C-based metabolic flux analysis. Anal Bioanal Chem. 2017;409:3713–8. https://doi.org/10.1007/s00216-017-0339-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mairinger T, Wegscheider W, Peña DA, Steiger MG, Koellensperger G, Zanghellini J, et al. Comprehensive assessment of measurement uncertainty in 13C-based metabolic flux experiments. Anal Bioanal Chem. 2018;410:3337–48. https://doi.org/10.1007/s00216-018-1017-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Agilent Technologies Inc. is acknowledged for a University Relation Research Grant for the project “GC/Q-TOF with Low-Energy Electron Impact Ionization Source for Advancing Isotopologue Analysis in Fluxomics“. Christina Troyer is acknowledged for valuable scientific discussions. EQ VIBT is acknowledged for providing mass spectrometry instrumentation. Gerrit Hermann from ISOtopic Solutions is acknowledged for his support in providing cell material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Mairinger.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mairinger, T., Sanderson, J. & Hann, S. GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis. Anal Bioanal Chem 411, 1495–1502 (2019). https://doi.org/10.1007/s00216-019-01590-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01590-y

Keywords

Navigation