Skip to main content
Log in

In situ analysis and imaging of aromatic amidine at varying ligand densities in solid phase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the development of a fast and accurate fluorescence-based assay for amidine linked to cellulose membranes and Sepharose gel. The assay is founded on the glyoxal reaction, which involves reaction of an amidine group with glyoxal and an aromatic aldehyde, leading to the formation of a fluorophore that can be analyzed and quantified by fluorescence spectroscopy and imaging. While the assay has been reported previously for aromatic amidine estimation in solution phase, here we describe its adaptation and application to amidine linked to diverse forms of solid matrices, particularly benzamidine Sepharose and benzamidine-linked cellulose membranes. These functionalized porous matrices find important application in purification of serine proteases. The efficacy of a protein separation device is determined by, among other factors, the ligand (amidine) density. Hence, a sensitive and reproducible method for amidine quantitation in solid phase is needed. The glyoxal reaction was carried out on microbead-sized Sepharose gel and cellulose membranes. Calibration curves were developed for each phase, which established linearity in the range of 0–0.45 μmol per mL amidine for free amidine in solution, 0–0.45 μmol amidine per mL Sepharose gel, and 0–0.48 μmol per mL cellulose membrane. The assay showed high accuracy (~ 3.4% error), precision (RSD < 2%), and reproducibility. Finally, we show how this fluorescent labeling (glyoxal) method can provide a tool for imaging membranes and ligand distribution through confocal laser scanning microscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51. https://doi.org/10.1039/C3LC50169H.

    Article  CAS  PubMed  Google Scholar 

  2. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20.

    Article  CAS  Google Scholar 

  3. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.

    Article  CAS  PubMed  Google Scholar 

  4. Xu Y, Liu M, Kong N, Liu J. Lab-on-paper micro-and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta. 2016;183(5):1521–42.

    Article  CAS  Google Scholar 

  5. Kim Y, Jang G, Lee TS. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl Mater Interfaces. 2015;7(28):15649–57. https://doi.org/10.1021/acsami.5b04724.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Zhao C, Liu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng. 2015;1:15014. https://doi.org/10.1038/micronano.2015.14.

    Article  Google Scholar 

  7. Park J, Park J-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sensors Actuators B Chem. 2017;246:1049–55. https://doi.org/10.1016/j.snb.2017.02.150.

    Article  CAS  Google Scholar 

  8. Yang C, Guan Y, Xing J, Liu H. Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg. Polymer. 2006;47(7):2299–304.

    Article  CAS  Google Scholar 

  9. Bayramoglu G, Ozalp VC, Altintas B, Arica MY. Preparation and characterization of mixed-mode magnetic adsorbent with p-amino-benzamidine ligand: operated in a magnetically stabilized fluidized bed reactor for purification of trypsin from bovine pancreas. Process Biochem. 2014;49(3):520–8.

    Article  CAS  Google Scholar 

  10. Fasoli E, Reyes YR, Guzman OM, Rosado A, Cruz VR, Borges A, et al. Para-aminobenzamidine linked regenerated cellulose membranes for plasminogen activator purification: effect of spacer arm length and ligand density. J Chromatogr B. 2013;930:13–21.

    Article  CAS  Google Scholar 

  11. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip. 2016;16(3):611–21.

    Article  CAS  PubMed  Google Scholar 

  12. Choi JR, Tang R, Wang S, Abas WABW, Pingguan-Murphy B, Xu F. Based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron. 2015;74:427–39.

    Article  CAS  PubMed  Google Scholar 

  13. Connelly JT, Rolland JP, Whitesides GM. “Paper machine” for molecular diagnostics. Anal Chem. 2015;87(15):7595–601.

    Article  CAS  PubMed  Google Scholar 

  14. Verma MS, Tsaloglou M-N, Sisley T, Christodouleas D, Chen A, Milette J, et al. Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron. 2018;99:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu Y, Shi W, Qin J, Lin B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem. 2010;82(1):329–35. https://doi.org/10.1021/ac9020193.

    Article  CAS  PubMed  Google Scholar 

  16. Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev. 2017;117(12):8447–80. https://doi.org/10.1021/acs.chemrev.7b00024.

    Article  CAS  PubMed  Google Scholar 

  17. Vicente T, Fáber R, Alves PM, Carrondo MJ, Mota JP. Impact of ligand density on the optimization of ion-exchange membrane chromatography for viral vector purification. Biotechnol Bioeng. 2011;108(6):1347–59.

    Article  CAS  PubMed  Google Scholar 

  18. Nestola P, Villain L, Peixoto C, Martins DL, Alves PM, Carrondo MJ, et al. Impact of grafting on the design of new membrane adsorbers for adenovirus purification. J Biotechnol. 2014;181:1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Bhambure R, Gillespie CM, Phillips M, Graalfs H, Lenhoff AM. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties. J Chromatogr A. 2016;1463:90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhambure R, Angelo JM, Gillespie CM, Phillips M, Graalfs H, Lenhoff AM. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties. J Chromatogr A. 2017;1506:55–64.

    Article  CAS  PubMed  Google Scholar 

  21. Liesienedot J, Račaitytedot K, Morkevičienedot M, Valančius P, Bumelis B. Immobilized metal affinity chromatography of human growth hormone effect of ligand density. J Chromatogr A. 1997;764(1):27–33.

    Article  Google Scholar 

  22. Belew M, Porath J. Immobilized metal ion affinity chromatography: effect of solute structure, ligand density and salt concentration on the retention of peptides. J Chromatogr A. 1990;516(2):333–54.

    Article  CAS  Google Scholar 

  23. Fogle J, Persson J. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. II. Process characterization. J Chromatogr A. 2012;1225:70–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lu HL, Lin DQ, Zhu MM, Yao SJ. Effects of ligand density and pore size on the adsorption of bovine IgG with DEAE ion-exchange resins. J Sep Sci. 2012;35(16):2131–7.

    Article  CAS  PubMed  Google Scholar 

  25. Healthcare G (2016) Ligand concentration for Benzamidine Sepharose™ 4 Fast Flow.

  26. Ekeley JB, Ronzio AR. The action of aromatic aldehydes upon the addition products obtained from aromatic amidines and glyoxal. J Am Chem Soc. 1935;57(7):1353–6. https://doi.org/10.1021/ja01310a054.

    Article  CAS  Google Scholar 

  27. Fuller A. The estimation of aromatic amidines. Biochem J. 1945;39(1):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuller AT. A colour reaction for aromatic amidines. Nature. 1944;154:773. https://doi.org/10.1038/154773a0.

    Article  CAS  Google Scholar 

  29. Jackson DP, Kuhl WJ, Irvan J. The determination of aromatic amidines in plasma and urine. J Biol Chem. 1947;167:377–86.

    CAS  PubMed  Google Scholar 

  30. Waalkes TP, DeVita VT. The determination of pentamidine (4,4′-diamidinophenoxypentane) in plasma, urine, and tissues. J Lab Clin Med. 1970;75(5):871–8. https://doi.org/10.5555/uri:pii:0022214370900417.

    Article  CAS  PubMed  Google Scholar 

  31. Evans SA, Olson S, Shore J. p-Aminobenzamidine as a fluorescent probe for the active site of serine proteases. J Biol Chem. 1982;257(6):3014–7.

    CAS  PubMed  Google Scholar 

  32. Marroquin M, Bruce T, Pellegrino J, Wickramasinghe SR, Husson SM. Characterization of asymmetry in microporous membranes by cross-sectional confocal laser scanning microscopy. J Membr Sci. 2011;379(1–2):504–15.

    Article  CAS  Google Scholar 

  33. Wickramasinghe S, Carlson J, Teske C, Hubbuch J, Ulbricht M. Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscopy. J Membr Sci. 2006;281(1–2):609–18.

    Article  CAS  Google Scholar 

  34. Schmidt C, Töpfer O, Langhoff A, Oppermann W, Schmidt-Naake G. Depth profiling of graft polymer membranes via confocal laser scanning microscopy. Chem Mater. 2007;19(17):4277–82.

    Article  CAS  Google Scholar 

  35. Snyder M, Vlachos D, Nikolakis V. Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes. J Membr Sci. 2007;290(1–2):1–18.

    Article  CAS  Google Scholar 

  36. Wang Y-N, Wei J, She Q, Pacheco F, Tang CY. Microscopic characterization of FO/PRO membranes–a comparative study of CLSM, TEM and SEM. Environ Sci Technol. 2012;46(18):9995–10003.

    CAS  PubMed  Google Scholar 

  37. Wang J, Dismer F, Hubbuch J, Ulbricht M. Detailed analysis of membrane adsorber pore structure and protein binding by advanced microscopy. J Membr Sci. 2008;320(1–2):456–67.

    Article  CAS  Google Scholar 

  38. Reichert U, Linden T, Belfort G, Kula M-R, Thömmes J. Visualising protein adsorption to ion-exchange membranes by confocal microscopy. J Membr Sci. 2002;199(1–2):161–6.

    Article  CAS  Google Scholar 

  39. Bolte S, Cordelieres F. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(3):213–32.

    Article  CAS  PubMed  Google Scholar 

  40. Kostinski AB. On the extinction of radiation by a homogeneous but spatially correlated random medium. JOSA A. 2001;18(8):1929–33.

    Article  CAS  PubMed  Google Scholar 

  41. Dmochowski IJ, Dmochowski JE, Oliveri P, Davidson EH, Fraser SE. Quantitative imaging of cis-regulatory reporters in living embryos. Proc Natl Acad Sci U S A. 2002;99(20):12895–900. https://doi.org/10.1073/pnas.202483199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalez RC, Woods RE. Digital Image Processing. New Jersey: Prentice Hall; 2002.

    Google Scholar 

  43. Čapek M, Janáček J, Kubínová L. Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech. 2006;69(8):624–35.

    Article  PubMed  Google Scholar 

  44. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M. A high-level 3D visualization API for Java and ImageJ. BMC Bioinf. 2010;11(1):274.

    Article  Google Scholar 

  45. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676.

    Article  CAS  Google Scholar 

  46. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 2017;18(1):529.

    Article  Google Scholar 

Download references

Funding

This project was supported by the National Science Foundation grant DMR-PREM-1523463. Support was also received from instrumentation facilities created through Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103475. Additional research infrastructure support and services were provided by the Tropical and Emerging Infectious Diseases Research Program, from the grant U54MD007600 from the National Institute on Minority Health and Health Disparities (NIMHD). Ms. Adriana N Santiago Ruiz received research fellowship from NIH-RISE Program at the University of Puerto Rico in Cayey (grant number 5R25GM059429-20) to participate in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vibha Bansal or Ezio Fasoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable

Informed consent

Not applicable

Disclaimer

The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official view of the NSF or NIH.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Hernandez, C.J., Santiago-Ruiz, A.N., Torres-Rosado, A.J. et al. In situ analysis and imaging of aromatic amidine at varying ligand densities in solid phase. Anal Bioanal Chem 411, 1549–1559 (2019). https://doi.org/10.1007/s00216-019-01588-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01588-6

Keywords

Navigation